A Fatigue Study of C-130 Aircraft Skin Using the Stop Drill Technique

Article Preview

Abstract:

The stop-drilling technique is a simple and economic way to delay crack propagationby drilling a hole on the crack tip and reducing stress concentration. This paper presents thepropagation of cracks and investigates how the increasing of the stop-drill diameter improvescrack initiation life in specimens of 2024-T3 aluminium alloy of C-130 aircraft skin. A numericalmethod was applied to simulate an automatic crack propagation by interacting ANSYSr andMATLABr, and several experimental fatigue tests were done to support the computationalresults. A Morrow equation was used to predict the fatigue life of the stop-drill. Good agreementof stress intensity factor along crack length was obtained between numerical and experimentalresults. All results show that fatigue life increases when the stop-drill diameter is larger. Whencompared to the 2mm diameter stop-drill, the experimental results show an improvement of189% and 464% to 4mm and 6mm diameter stop-drill fatigue life, and the numerical results of333% and 952%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

685-690

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: