The Application of Computational Thermodynamics for the Determination of Surface Tension and Gibbs-Thomson Coefficient of Aluminum Ternary Alloys

Article Preview

Abstract:

Casting simulation requires high quality information about the thermophysical properties of the alloy, but the number of alloys for which such information is available is limited. In this paper, a solution of Butler’s formulation for surface tension is presented for Al-Cu-Si ternary alloys and consequently, permitting the Gibbs-Thomson coefficient to be determined. The importance of the Gibbs-Thomson coefficient is related to the reliability of predictions furnished by predictive microstructure growth models and of numerical computations of solidification thermal variables, which will be strongly dependent on the values of the thermophysical properties adopted in the calculations. The Gibbs-Thomson coefficient for ternary alloys is seldom reported in the literature. A numerical model based on Powell hybrid algorithm and on a finite difference Jacobian approximation was coupled with a ThermoCalc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Cu-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

871-876

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. L. Rooy: in Metals Handbook, ASM International, Materials Park, Ohio, Vol. 15 (1988) pp.743-770.

Google Scholar

[2] A. A. Canales, J. Talamantes-Silva, D. Gloria, S. Valtierra, R. Colás, Thermochim. Acta, Vol. 510 (2010) pp.82-87.

DOI: 10.1016/j.tca.2010.06.026

Google Scholar

[3] W. R. Osorio, P.R. Goulart, A. Garcia, Mater. Lett. Vol. 62 (2008) pp.365-369.

Google Scholar

[4] Z. Guo, N. Saunders, A.P. Miodownik, J.Ph. Schillé, Mater. Sci. Eng. A Vol. 413-414 (2005) pp.465-469.

Google Scholar

[5] P.R. Goulart, J.E. Spinelli, N. Cheung, A. Garcia, Mater. Chem. Phys. Vol. 119 (2010) pp.272-278.

Google Scholar

[6] M.V. Canté, J.E. Spinelli, N. Cheung, A. Garcia, Met. Mater. Int. Vol. 16 (2010) pp.39-49.

Google Scholar

[7] K.S. Cruz, E.S. Meza, F.A.P. Fernandes, J.M.V. Quaresma, L.C. Casteletti, A. Garcia, Metall. Mater. Trans. A Vol. 41 (2010) pp.972-984.

Google Scholar

[8] W.R. Osório, L.C. Peixoto, M.V. Canté, A. Garcia, Electrochim. Acta. Vol. 55 (2010) pp.4078-4085.

Google Scholar

[9] D. Bouchard, J. S. Kirkaldy, Metall. Mater. Trans. B Vol. 28B (1997) pp.651-663.

Google Scholar

[10] J.A.V. Butler, Proc. Roy. Soc. A Vol.135 (1932) pp.348-375.

Google Scholar

[11] R. Speiser, D.R. Poirier, K.S. Yeum, Scripta Metall. Vol. 21 (1987) pp.68-692.

Google Scholar

[12] K.S. Yeum, R. Speiser, D.R. Poirier, Metall. Trans. Vol. 20B (1989) pp.693-703.

Google Scholar

[13] R. Picha, J. Vrestal, A. Kroupa, CALPHAD, Vol. 28 (2004) pp.141-146.

Google Scholar

[14] J. Brillo, I. Egry, T. Matsushita, Int. J. Thermophys. Vol. 27 (2006) pp.1778-1791.

Google Scholar

[15] T. Tanaka, T. Lida, Steel Res. Vol. 65 (1994) pp.21-28.

Google Scholar

[16] J. Miettinen, Comp. Mater. Sci. Vol. 36 (2006) pp.367-380.

Google Scholar

[17] B. Saatçy, N. Marasli, M. Gunduz, Thermochim. Acta, Vol. 454 (2007) pp.128-134.

Google Scholar

[18] Y. Liu, Z. Long, H. Wang, Y. Du, B. Huang, Scripta Mater. Vol. 55 (2006) pp.367-370.

Google Scholar

[19] A.P. Boeira, I.L. Ferreira, A. Garcia, Mater. Des. Vol. 30 (2009) p.2090–2098.

Google Scholar

[20] I. L. Ferreira, J.F.C. Lins; D. J. Moutinho; L.G Gomes; A. Garcia. J. Alloys Compd. Vol. 503 (2010) pp.31-39.

Google Scholar

[21] T.P. Hoar, D.A. Melford, Trans. Faraday Soc. Vol. 53 (1957) pp.315-326.

Google Scholar

[22] W. Gasior, Z. Moser, J. Pstrus, B. Krzyzak, K. Fitzner, J. Phase Equilib. Vol . 24 (2003) pp.40-49.

Google Scholar

[23] T. Tanaka, K. Hack, T. Lida, S. Hara, Z. Metallkd. Vol. 87 (1996) pp.380-389.

Google Scholar

[24] T. Tanaka, K. Hack, S. Hara, MRS Bull. Vol. 24 (1999) pp.45-50.

Google Scholar

[25] J.E. Spinelli, N. Cheung, A. Garcia, Philos. Mag. Vol. 91 (2011) pp.1705-1723

Google Scholar