Thermal Parameters, Microstructure and Porosity During Transient Solidification of Ternary Al–Cu–Si Alloys

Article Preview

Abstract:

Solidification of ternary Al-Cu-Si alloys begins with the development of a complex dendritic network typified by primary (λ1) and secondary (λ2) dendrite arm spacings which depend on the chemical composition of the alloy and on the casting thermal parameters such as the growth rate and the cooling rate. These thermal parameters control the scale of dendritic arms, the size and distribution of porosity and intermetallic particles in the casting. In this paper, λ1 and λ2 were correlated with experimental thermal parameters i.e., the tip growth rate and the tip cooling rate. The porosity profile along the casting length has also been experimentally determined. The volumetric fraction of pores increase with the increase in alloying Si and with the increase in Fe concentration at the regions close to the casting cooled surface.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

883-888

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Zeren, J. Mater. Proc. Technol.Vol.169 (2005) p.292.

Google Scholar

[2] P. Riani, K. Sufryd, G. Cacciamani, Intermetallics Vol.17 (2009) p.154.

Google Scholar

[3] Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, H.W. Doty, Mater. Sci. Eng. A Vol. 367 (2004) p.96.

Google Scholar

[4] A.J. Griffin, Impedance spectroscopy response of aluminum-copper-silicon alloys, PhD Thesis, Rice University, 1991.

Google Scholar

[5] D Zhang, J. Peng, T. Liu, Mater. Sci. Eng. A Vol. 425 (2006) p.78.

Google Scholar

[6] W. Kurz, J. D. Fisher. Acta Metall. Vol. 29 (1981) p.11.

Google Scholar

[7] R. Trivedi. Metall. Mater. Trans. A Vol. A15 (1984) p.977.

Google Scholar

[8] J. D. Hunt, S. Z. Lu. Metall. Mater. Trans. A Vol. A27 (1996), p.611.

Google Scholar

[9] P. D. Lee, R. C. Chirazi, R. C. Atwood, W. Wang. Acta Mater. Vol 51 (2003), p.5447.

Google Scholar

[10] V.R. Voller. Can. Metall. Quarterly Vol. 37 (1998) p.169.

Google Scholar

[11] C.R. Swaminathan, V. R. Voller. Int. J. Heat Mass Transfer Vol. 40 (1997) p.2859.

Google Scholar

[12] C.Y. Wang, C. Berckermann. Metall. Trans. Vol. 24 (1993) p.2787.

Google Scholar

[13] I.L. Ferreira, B. Nestler, A. Garcia. Scripta Mater. Vol. 50 (2004), p.407.

Google Scholar

[14] I.L. Ferreira, D.J. Moutinho, L.G. Gomes, O.L. Rocha, A. Garcia, Phil. Mag. Lett. Vol. 89 (2009) p.769.

Google Scholar

[15] I.L. Ferreira, J.F.C. Lins, D.J. Moutinho, L.G. Gomes, A. Garcia, J. Alloys Compd. Vol. 503 (2010) p.31.

Google Scholar

[16] M. Easton, C. Davidson, D. St John, Metall. Mater. Trans. A Vol. 41 (2010) p.1528.

Google Scholar

[17] A.P. Boeira, I.L. Ferreira, A. Garcia, Mater. Des. Vol. 30 (2009) p.2090.

Google Scholar

[18] K.S. Cruz, E.S. Meza, F.A.P. Fernandes, J.M.V. Quaresma, L.C. Casteletti, A. Garcia, Metall. Mater. Trans. A Vol. 41 (2010) p.972.

Google Scholar

[19] M.Gündüz , E. Çadirli, Mater Sci Eng A Vol. 327 (2002) p.167.

Google Scholar

[20] S.T. McClain, A.S. McClain, J.T. Berry, AFS Trans. Vol. 109 (2001) p.321.

Google Scholar

[21] O.L. Rocha, C. A. Siqueira, A. Garcia. Metall. Mater. Trans. A Vol. 34 (2003) p.995.

Google Scholar

[22] J.A. Taylor, G.B. Schaffer, D.H. StJohn, Metall. Mater. Trans. A Vol.30 (1999) p.1657.

Google Scholar