On the Relationship of the Relative Intensity I3 and a Cavity Number as Obtained from Computer Simulations

Article Preview

Abstract:

In this contribution a generalized picture of the cavity number behavior is obtained by means of molecular dynamics simulations and consequent free volume analysis. The cavity number obtained for free volume cavities defined by different probe radii shows a complex behavior with the temperature. The number of cavities determined by small probes drops with the temperature. The number of cavities determined by large probes increases. This complex behavior of the cavity number can be discussed with the distinct behavior of the relative intensity, as observed in the experiment, and a support for the most basic of assumptions, that the cavity number relates to the relative intensity, is given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-189

Citation:

Online since:

November 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. C. Jean: in Positron Spectroscopy of Solids, edited by A. Dupasquier OS, Ohmsha, Amsterdam (1995) p.563–580.

Google Scholar

[2] G. S. Grest and M. H. Cohen: Adv. Chem. Phys. Vol. 48 (1981) p.455

Google Scholar

[3] S.J. Tao: J. Chem. Phys. Vol. 56 (1972) p.5499

Google Scholar

[4] M. Eldrup, D. Lightbody, J.N. Sherwood: Chem. Phys. Vol. 63 (1981) p.51

Google Scholar

[5] H. Nakanishi, S.J. Wang, Y.C. Jean, in Positron Annihilation Studies of Fluids, edited by S.C. Sharma (World Science, Singapore, 1988)

Google Scholar

[6] D. Račko, S. Capponi, F. Alvarez and J. Colmenero: J. Chem. Phys. Vol. 134 (2011) p.044512

Google Scholar

[7] D. Račko, S. Capponi, F. Alvarez, J. Bartso and J. Colmenero: J. Chem. Phys. Vol. 133 (2009) p.064903

Google Scholar

[8] D. Račko and J. Krištiak: Mat. Sci Forum (this issue).

Google Scholar

[9] D. Frenkel and Berend Smit: Understanding Molecular Simulations – From Algorithms to Applications, APPENDIX F, Academic Press, A Division of Harcourt, Inc., San Diego, CA, USA (1996).

Google Scholar

[10] J. Bernal: Proc. R. Soc. London Vol. 280 (1964) p.299

Google Scholar

[11] D. Račko, R. Chelli, G. Cardini, J. Bartos and S. Califano: Eur. Phys. J. D Vol. 32 (2005) p.289

Google Scholar

[12] D. Račko, R. Chelli, G. Cardini, S. Califano, J. Bartos: Theor. Chem. Acc. Vol. 118 (2007) p.443

Google Scholar

[13] D. Račko: Mat. Sci. Forum, Vol. 666 (2011) pp.15-20

Google Scholar

[14] T. Goworek: Mat. Sci. Forum (this issue).

Google Scholar

[15] R. Chelli, P. Procacci, G. Cardini, S. Califano: Phys. Chem. Chem. Phys. Vol. 1 (1999) p.879

Google Scholar

[16] J. Bartos, O. Šauša, P. Bandžuch, J. Zrubcová, J. Krištiak: J. of Non-Cryst. Sol. Vol. 307–310 (2002) p.417–425

DOI: 10.1016/s0022-3093(02)01503-x

Google Scholar

[17] V. Majerník, J. Krištiak, O. Šauša and M. Iskrová-Miklošovičová: Mat. Sci Forum (this issue).

DOI: 10.4028/www.scientific.net/msf.733.80

Google Scholar

[18] T. Blochowitz, A. Brodin, E.A. Roessler: Advances in Chemical Physics PART A Vol. 133 (2006) p.140

Google Scholar

[19] C.A. Angell, K.L. Ngai, G.B. Mckenna, P.F. McMillan, S.W. Martin: J. Appl. Phys. Vol. 88 (2000) p.3113

Google Scholar

[20] A. Brodin, C. Gainaru, V. Porokhonskyy and E.A. Rössler: J. Phys.: Condens Matter Vol 19 (2007) p.205104

DOI: 10.1088/0953-8984/19/20/205104

Google Scholar

[21] J. Bartos, J. Krištiak, T. Kanaya: Physica Vol. B 234-236 (1997) p.435

Google Scholar

[22] O. Šauša, J. Zrubcová, P. Bandžuch, J. Krištiak, J. Bartos: Rad. Phys. Chem. Vol. 58 (2000) pp.479-483

Google Scholar

[23] J.T. Bendler, J.J. Fontanella, M.F. Shlesinger, J. Bartoš, O. Šauša, and J. Krištiak: Phys Rev Vol. E 71 (2005) p.031508

DOI: 10.1103/physreve.71.031508

Google Scholar