On the Relationship of the Relative Intensity I3 and a Cavity Number as Obtained from Computer Simulations

Abstract:

Article Preview

In this contribution a generalized picture of the cavity number behavior is obtained by means of molecular dynamics simulations and consequent free volume analysis. The cavity number obtained for free volume cavities defined by different probe radii shows a complex behavior with the temperature. The number of cavities determined by small probes drops with the temperature. The number of cavities determined by large probes increases. This complex behavior of the cavity number can be discussed with the distinct behavior of the relative intensity, as observed in the experiment, and a support for the most basic of assumptions, that the cavity number relates to the relative intensity, is given.

Info:

Periodical:

Edited by:

Jozef Krištiak, Jan Kuriplach and Pradeep K. Pujari

Pages:

183-189

Citation:

D. Račko, "On the Relationship of the Relative Intensity I3 and a Cavity Number as Obtained from Computer Simulations", Materials Science Forum, Vol. 733, pp. 183-189, 2013

Online since:

November 2012

Authors:

Export:

Price:

$38.00

[1] Y. C. Jean: in Positron Spectroscopy of Solids, edited by A. Dupasquier OS, Ohmsha, Amsterdam (1995) p.563–580.

[2] G. S. Grest and M. H. Cohen: Adv. Chem. Phys. Vol. 48 (1981) p.455.

[3] S.J. Tao: J. Chem. Phys. Vol. 56 (1972) p.5499.

[4] M. Eldrup, D. Lightbody, J.N. Sherwood: Chem. Phys. Vol. 63 (1981) p.51.

[5] H. Nakanishi, S.J. Wang, Y.C. Jean, in Positron Annihilation Studies of Fluids, edited by S.C. Sharma (World Science, Singapore, 1988).

[6] D. Račko, S. Capponi, F. Alvarez and J. Colmenero: J. Chem. Phys. Vol. 134 (2011) p.044512.

[7] D. Račko, S. Capponi, F. Alvarez, J. Bartso and J. Colmenero: J. Chem. Phys. Vol. 133 (2009) p.064903.

[8] D. Račko and J. Krištiak: Mat. Sci Forum (this issue).

[9] D. Frenkel and Berend Smit: Understanding Molecular Simulations – From Algorithms to Applications, APPENDIX F, Academic Press, A Division of Harcourt, Inc., San Diego, CA, USA (1996).

[10] J. Bernal: Proc. R. Soc. London Vol. 280 (1964) p.299.

[11] D. Račko, R. Chelli, G. Cardini, J. Bartos and S. Califano: Eur. Phys. J. D Vol. 32 (2005) p.289.

[12] D. Račko, R. Chelli, G. Cardini, S. Califano, J. Bartos: Theor. Chem. Acc. Vol. 118 (2007) p.443.

[13] D. Račko: Mat. Sci. Forum, Vol. 666 (2011) pp.15-20.

[14] T. Goworek: Mat. Sci. Forum (this issue).

[15] R. Chelli, P. Procacci, G. Cardini, S. Califano: Phys. Chem. Chem. Phys. Vol. 1 (1999) p.879.

[16] J. Bartos, O. Šauša, P. Bandžuch, J. Zrubcová, J. Krištiak: J. of Non-Cryst. Sol. Vol. 307–310 (2002) p.417–425.

DOI: https://doi.org/10.1016/s0022-3093(02)01503-x

[17] V. Majerník, J. Krištiak, O. Šauša and M. Iskrová-Miklošovičová: Mat. Sci Forum (this issue).

[18] T. Blochowitz, A. Brodin, E.A. Roessler: Advances in Chemical Physics PART A Vol. 133 (2006) p.140.

[19] C.A. Angell, K.L. Ngai, G.B. Mckenna, P.F. McMillan, S.W. Martin: J. Appl. Phys. Vol. 88 (2000) p.3113.

[20] A. Brodin, C. Gainaru, V. Porokhonskyy and E.A. Rössler: J. Phys.: Condens Matter Vol 19 (2007) p.205104.

[21] J. Bartos, J. Krištiak, T. Kanaya: Physica Vol. B 234-236 (1997) p.435.

[22] O. Šauša, J. Zrubcová, P. Bandžuch, J. Krištiak, J. Bartos: Rad. Phys. Chem. Vol. 58 (2000) pp.479-483.

[23] J.T. Bendler, J.J. Fontanella, M.F. Shlesinger, J. Bartoš, O. Šauša, and J. Krištiak: Phys Rev Vol. E 71 (2005) p.031508.

DOI: https://doi.org/10.1103/physreve.71.031508