Positron Annihilation Study of Neutron-Irradiated Nuclear Reactor Pressure Vessel Steels and their Model Alloy: Effect of Purity on the Post-Irradiation Annealing Behavior

Article Preview

Abstract:

Post-irradiation annealing (PIA) behavior of irradiation-induced microstructural changes and hardening of two kind of A533B (first generation (1stGENS: 0.16 wt.% Cu) and second generation (2ndGENS: 0.04 wt.% Cu)) steels after neutron-irradiation of 3.9 × 1019 n cm–2 at 290 °C has been studied by positron annihilation spectroscopy, atom probe tomography and Vickers microhardness measurements. In the 1stGENS, clear two recovery stages are observed: (i) as-irradiated state to 450 °C and (ii) 450 to 600 °C. The first stage is due to annealing out of the most of irradiation-induced vacancy-related defects (VRDs), and the second stage corresponds to dissolving irradiation-induced Cu-rich solute nano-clusters (CRSCs). The experimental hardening is almost twice of the hardening due to the CRSCs estimated by Russell-Brown model below 350 °C, but almost the same as the estimation from 400 to 550 °C. In the 2ndGENS, the VRDs and non-Cu-rich solute nano-clusters (NCRSCs) recover at 450 °C. No CRSC has been formed even in all the annealing process. The experimental hardening is almost twice of the hardening estimated due to the NCRSCs by Russell-Brown model below 400 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-263

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.R. Odette and G.E. Lucas, JOM 53 (2001) 18-22.

Google Scholar

[2] M.G. Burke, R.J. Stofanak, J.M. Hyde, C.A. English and W.L. Server, J. ASTM Int. 1 (2004) 194-207.

Google Scholar

[3] K. Fujii, H. Nakata, K. Fukuya, T. Ohkubo, K. Hono, Y. Nagai, M. Hasegawa and T. Yoshiie, J. Nucl. Mater. 400 (2010) 46-55.

DOI: 10.1016/j.jnucmat.2010.02.008

Google Scholar

[4] V. Slugeň, R. Hinca and M. Stacho, J. Phys. Conf. Ser. 265 (2011) 012008-1-14.

DOI: 10.1088/1742-6596/265/1/012008

Google Scholar

[5] T. Takeuchi, A. Kuramoto, J. Kameda, T. Toyama, Y. Nagai, M. Hasegawa, T. Ohkubo, T. Yoshiie, Y. Nishiyama and K. Onizawa, J. Nucl. Mater. 402 (2010) 93-101.

DOI: 10.1016/j.jnucmat.2010.04.008

Google Scholar

[6] A. Kuramoto, T. Toyama, T. Takeuchi, Y. Nagai, M. Hasegawa, T. Yoshiie and Y. Nishiyama, submitted to Journal of Nuclear Materials (2011)

Google Scholar

[7] Y. Nagai, M. Hasegawa, Z. Tang, A. Hempel, K. Yubuta, T. Shimamura, Y. Kawazoe, A. Kawai and F. Kano, Phys. Rev. B 61 (2000) 6574.

DOI: 10.1103/physrevb.61.6574

Google Scholar

[8] Y. Nagai, T. Toyama, Y. Nishiyama, M. Suzuki, Z. Tang and M. Hasegawa, Appl. Phys. Lett. 87, (2005) 261920.

Google Scholar

[9] K.C. Russell and L.M. Brown, Acta Metall. 20 (1972) 969.

Google Scholar

[10] G. Salje and M Feller-Kniepmeier, J. Appl. Phys 48 (1977) 1833.

Google Scholar

[11] Y Nagai, K Takadate, Z Tang, H Ohkubo, H Sunaga, H Takizawa and M Hasegawa J. Phys. Conf. Ser. 265 (2011) 012007.

DOI: 10.1088/1742-6596/265/1/012007

Google Scholar

[12] K. Inoue, Y. Nagai, Z. Tang, T. Toyama, Y. Hosoda, A. Tsuto and M. Hasegawa, Phys. Rev. B 83 (2011) 115459.

Google Scholar

[13] Z. Tang, T. Toyama, Y. Nagai, K. Inoue, Z.Q. Zhu and M. Hasegawa, J. Phys.Condens. Matter 20 (2008) 445203.

Google Scholar

[14] T. Toyama, Z. Tang, K. Inoue, T. Chiba, T. Ohkubo, K. Hosono, Y. Nagai and M. Hasegawa, submitted to Phys. Rev. B (2011).

Google Scholar