Design and Simulation of a Trap-Based Pulsed Slow Positron Beam

Article Preview

Abstract:

A simple pulsed slow positron beam based on a Penning-trap has been designed and is being constructed in Wuhan University. The cooled positrons from the trap with very low energy dispersion are dumped and chopped to pulses of a few tens of ns in width. Positron pulses are bunched by adjusting the potential of drift tube using an arbitrary wave generator, then accelerated to the target. Influences of the pulse width, the energy dispersion of positrons etc. on the time resolution of bunched positron pulse are simulated. The result shows that lower energy dispersion of positrons leads to much narrower positron pulses, indicating that a trap-based slow positron beam has a great advantage in developing a pulsed slow positron beam.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

314-317

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Asoka-Kumar, K. G. Lynn and D. O. Welch, J. Appl. Phys. 76 (9) (1994), p.4935.

Google Scholar

[2] P. G. Coleman, Appl. Surf. Phys. 194 (2002), pp.264-270.

Google Scholar

[3] N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono and M. Fujinami, J. Appl. Phys. 103 (2008), p.094916.

DOI: 10.1063/1.2919783

Google Scholar

[4] N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono and M. Fujinami, Appl. Phys. Lett. 94 (2009), p.194104.

DOI: 10.1063/1.3137188

Google Scholar

[5] R. G. Greaves, AIP Conf. Proc. 606 (2002), pp.3-9.

Google Scholar

[6] T. Itahashi, AIP Conf. Proc. 1037 (2008), pp.249-253.

Google Scholar

[7] A. P. Mills Jr., Nucl. Instr. Meth. Phys. Res. B 192 (2002), pp.107-116.

Google Scholar

[8] R. G. Greaves and C. M. Surko, Nucl. Instr. Meth. Phys. Res. B 192 (2002), pp.90-96.

Google Scholar

[9] C. He, E. Hamada, N. Djourelov, T. Suzuki, H. Kobayashi, K. Kondo and Y. Ito. Nucl. Instr. Meth. Phys. Res. B 211 (2003), pp.571-576.

Google Scholar

[10] N. Oshima, T. Suzuki, I. Kanazawa and Y. Ito, Appl. Surf. Sci. 116 (1997), pp.82-86.

Google Scholar

[11] D. Schödlbauer, P. Sperr, G. Kögel and W. Triftshäuser, Nucl. Instr. Meth. Phys. Res. B 34 (1988), pp.258-268.

Google Scholar