[1]
F. Wakai, S. Sakaguchi and Y. Matsuno, Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals, Adv. Ceram. Mater. (1986) 1 259-263.
DOI: 10.1111/j.1551-2916.1986.tb00026.x
Google Scholar
[2]
A. Domínguez-Rodríguez, D. Gómez-García and F. Wakai, Superplastic ceramic composites, in ceramic matriz composites: Microstructure, properties and applications: in Ceramic-matrix composites: microstructure, properties and applications, edited by I. M. Low, Wooddhead Publishing in Materials, 434, Cambridge, United Kingdom (2006) pp.434-454.
DOI: 10.1201/9781439823743.ch16
Google Scholar
[3]
A. Domínguez-Rodríguez and D. Gómez-García, Superplasticity in ceramics: accommodation–controlling mechanisms revisited in: Ceramics Science and Technology. Edited by R. Riedel and I. W. Chen, 633, Wiley-WCH, Verlag GmbH, Weinheim, Germany (2009), pp.633-663.
DOI: 10.1002/9783527631940.ch27
Google Scholar
[4]
M. Jiménez.Melendo, A. Domínguez-Rodríguez and A. Bravo-León, J. Am. Ceram. Soc. Superplastic flow of fine-grained yttria-stabilized zirconia polycrystals: constitutive equations and deformation mechanisms (1998) 81 11 2761-2776.
DOI: 10.1111/j.1151-2916.1998.tb02695.x
Google Scholar
[5]
E. Artz, M. F. Ashby and R. A. Verrall, Acta mater. Interface-controlled diffusional creep (1983) 31 12 1977-1989.
DOI: 10.1016/0001-6160(83)90015-9
Google Scholar
[6]
R. Duclos, Direct observation of grain rearrangement during superplastic creep of a fine-grained zirconia J. Eur. Ceram. Soc. (2004) 24 10-11 3103-3110.
DOI: 10.1016/j.jeurceramsoc.2003.10.011
Google Scholar
[7]
A. Domínguez-Rodríguez, D. Gómez-García and M. Castillo-Rodríguez, A critical assessment of the dislocation-driven model for superplasticity in yttria tetragonal zirconia polycrystals, J. Eur. Ceram. Soc. (2008) 28 3 571-575.
DOI: 10.1016/j.jeurceramsoc.2007.08.002
Google Scholar
[8]
D. Gómez-García, E. Zapata-Solvas, A. Domínguez-Rodríguez and L. P. Kubin, Diffusion-driven superplasticity in ceramics: modeling and comparison with experimental data, Phys. Rev. B (2009) 80 214107(1)-(8).
DOI: 10.1103/physrevb.80.214107
Google Scholar
[9]
9-M. F. Ashby and R. A. Verrall, Acta metal. Diffusion-accommodated flow and superplasticity (1973) 21 2 149-163.
DOI: 10.1016/0001-6160(73)90057-6
Google Scholar
[10]
10-A. Ball and M. M. Hutchinson, Metal Sci. J. Superplasticity in the aluminium-zinc eutectoid (1969), 3, 1 1-7(7).
Google Scholar
[11]
S. de Bernardi-Martín, D. Gómez-García, A. Domínguez-Rodríguez and G. de Portu, J. Eur. Ceram. Soc. A first-study of the high-temperature plasticity of ceria-doped zirconia polycrystals (2010) 30 16 3357-3362.
DOI: 10.1016/j.jeurceramsoc.2010.07.043
Google Scholar
[12]
R. L. González-Romero, J. J. Meléndez, D. Gómez-García, F. L. Cumbrera, A. Domínguez-Rodríguez and F. Wakai, Cation diffusion in yttria-zirconia by molecular dynamics, Solid State Ionics (2011) 204-205 1-6.
DOI: 10.1016/j.ssi.2011.10.006
Google Scholar
[13]
13-B. M. Moshtaghioun, D. Gómez-García, M. Castillo-Rodríguez and A. Domínguez-Rodríguez, Acta materiallia, (2012): submitted to Acta Materiallia.
Google Scholar
[14]
A. Domínguez-Rodríguez, D. Gómez-García, M. Castillo-Rodríguez, E. Zapata-Solvas and R. Chaim, Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?, Int. J. Mat. Res. (2010) 101 10 1215-1221.
DOI: 10.3139/146.110401
Google Scholar