Superplasticity of AlCoCrCuFeNi High Entropy Alloy

Article Preview

Abstract:

An AlCoCrCuFeNi high entropy alloy was multiaxially isothermally forged at 950°C to produce a fine equiaxed structure with the average grain/particle size of ~1.5 µm. The forged alloy exhibited superplastic behavior in the temperature range of 800-1000°C. For example, during deformation at a strain rate of 10-3 s-1, tensile ductility increased from 400% to 860% when the temperature increased from 800°C to 1000°C. An increase in strain rate from 10-4 to 10-2 s-1 at T = 1000°C did not affect ductility: elongation to failure was about 800%. The strain rate sensitivity of the flow stress was rather high, m = 0.6, which is typical to the superplastic behavior. The equiaxed morphology of grains and particles retained after the superplastic deformation, although some grain/particle growth was observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-151

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.-W.Yeh, S.-K. Chen, S.-J. Lin, J.-Y.Gan, et al.: Adv. Eng. Mater. Vol. 6 (5) (2004), p.299

Google Scholar

[2] J.-W. Yeh: Ann. Chim: Sci. Mater. Vol. 31 (2006), p.633

Google Scholar

[3] J.-W. Yeh, Y.-L. Chen, S.-J. Lin, S.-K. Chen: Mater. Sci. Forum Vol. 560 (2007), p.1

Google Scholar

[4] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle: Intermetallics Vol. 19 (2011), p.698

Google Scholar

[5] O.N. Senkov, J.M. Scott, S.V. Senkova, et al.: J. Alloys Comp. Vol. 509 (2011), p.6043

Google Scholar

[6] C.-W. Tsai, Y.-L. Chen, M.-H. Tsai, et al.: J. Alloys Comp. Vol. 486 (2009), p.427

Google Scholar

[7] O.N. Senkov, G.B. Wilks, D.B. Miracle, et al.: Intermetallics 18 (2010), p.1758

Google Scholar

[8] O.N. Senkov and C.F. Woodward: Mater. Sci. Eng. A Vol. 529 (2011), p.311.

Google Scholar

[9] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward: J. Mater. Sci. 47 (2012), p.4062.

DOI: 10.1007/s10853-012-6260-2

Google Scholar

[10] R.M. Imayev, G.A. Salishchev, O.N. Senkov, et al.: Mater. Sci. Eng. A Vol. 300 (2001), p.263.

Google Scholar

[11] G.A. Salishchev, R.I. Imayev, O.N. Senkov, and F.H. Froes: JOM Vol. 52 (12) (2000), p.46

Google Scholar

[12] S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, et al.: Scripta Mater. Vol. 51 (2004), p.1147

Google Scholar

[13] A.V. Kuznetsov, D.G. Shaysultanov, et al.: Mater. Sci. Eng. A Vol. 533 (2012), p.107

Google Scholar

[14] C.J. Tong, M.R. Chen, S.K. Chen, et al.: Metall. Mater. Trans. A Vol. 36A (2005), p.1263

Google Scholar

[15] C.J. Tong, Y.L. Chen, S.K. Chen, et al.: Metall. Mater. Trans. A Vol. 36A (2005), p.881

Google Scholar

[16] F.J. Wang, Y. Zhang, G.L. Chen, H.A. Davies, Int. J. Mod. Phys. B Vol. 6-7 (2009), p.1254

Google Scholar

[17] V.M. Imayev, R.M. Imayev, G.A. Salishchev, Intermetallics Vol. 8 (2000), p.1.

Google Scholar

[18] T.G. Nieh, J. Wadsworth and O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridhe Solid State Science Series), University Press, Cambridge, UK, 1997.

Google Scholar

[19] K.B. Jang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Fang, et al.: J. Alloys Comp. Vol. (2010), p.295.

Google Scholar