Superplastic Forming of Friction Stir Processed Magnesium Alloys for Aeronautical Applications: A Modeling Approach

Article Preview

Abstract:

Magnesium alloys are attractive for lightweight structural applications in the transportation industry because of their low density and high specific strength and stiffness [1]. With an ultrafine-grained microstructure, they exhibit superplasticity at relatively low temperatures and high strain rates [2]. Friction stir processing (FSP) was used to obtain a microstructure with ultrafine grains in the magnesium alloy AZ31. Microstructures obtained using different rotational speeds are studied. Free bulge forming of the FS processed AZ31 sheets are carried out to evaluate the superplastic behaviour [3]. The model and the evolution equations are, then, implemented into a commercial FE code and different simulations are conducted to correlate the experimental and numerical results for the model validation [4]. The purpose of this study is to investigate the effect of the microstructure on the superplastic behaviour using free bulge forming and FE simulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

180-191

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.U. Kainer, Magnesium alloys and technology, Wiley-VCH GmbH, Weinheim, 2003.

Google Scholar

[2] B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha, M.A. Omar, Friction stir processing of commercial AZ31 magnesium alloy J. Mater. Process. Tech. 191 (2007) 77-81.

DOI: 10.1016/j.jmatprotec.2007.03.045

Google Scholar

[3] Y. Luo, S.G. Luckey, P.A. Friedman, Y. Peng, Development of an advanced superplastic forming process utilizing a mechanical pre-forming operation Int. J. Mach. Tool. Manu. 48 (2008) 1509-1518.

DOI: 10.1016/j.ijmachtools.2007.12.010

Google Scholar

[4] M.K. Khraisheh, F.K. Abu-Farha, M.A. Nazzal, K.J. Weinmann, Combined Mechanics-Materials Based Optimization of Superplastic Forming of Magnesium AZ31 Alloy CIRP Ann.-Manuf. Techn. 55 (2006) 233-236.

DOI: 10.1016/s0007-8506(07)60405-3

Google Scholar

[5] J.A. Carpenter Jr, J. Jackman, L. Naiyi, R.J. Osborne, B.R. Powell, P. Sklad, Automotive Mg research and development in North America Mater. Sci. Forum 546-549 (2007) 11-24.

DOI: 10.4028/www.scientific.net/msf.546-549.11

Google Scholar

[6] G. Song, A. Atrens, Recent insights into the mechanism of magnesium corrosion and research suggestions Adv. Eng. Mater. 9 (2007) 177-183.

DOI: 10.1002/adem.200600221

Google Scholar

[7] C. Meola, G. Giorleo, U. Prisco, Experimental evaluation of properties of cross-linked polyethylene Mater. Manuf. Process. 18 (2003) 135-144.

DOI: 10.1081/amp-120017595

Google Scholar

[8] A. Pardo, P. Casajús, M. Mohedano, A.E. Coy, F. Viejo, B. Torres, E. Matykina, Corrosion protection of Mg/Al alloys by thermal sprayed aluminium coatings Appl. Surf. Sci. 255 (2009) 6968-6977.

DOI: 10.1016/j.apsusc.2009.03.022

Google Scholar

[9] W.J. Kim, S.W. Chung, C.S. Chung, D. Kum, Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures Acta Mater. 49 (2001) 3337-3345.

DOI: 10.1016/s1359-6454(01)00008-8

Google Scholar

[10] F.H. Froes, D. Eliezer, E. Aghion, The science, technology, and applications of magnesium Jom-J. Min. Met. Mat. S. 50 (1998) 30-34.

DOI: 10.1007/s11837-998-0411-6

Google Scholar

[11] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing Mater. Sci. Eng. 50 (2005) 1-78P.

Google Scholar

[12] C. Bitondo, U. Prisco, A. Squilace, P. Buonadonna, G. Dionoro, Friction-stir welding of AA 2198 butt joints: Mechanical characterization of the process and of the welds through DOE analysis Int. J. Adv. Manuf. Tech. 53 (2011) 505-516.

DOI: 10.1007/s00170-010-2879-9

Google Scholar

[13] A.J. Ramirez, M.C. Juhas, Microstructural evolution in Ti-6Al-4V friction stir welds Mater. Sci. Forum, 426-432 (2003) 2999-3004

DOI: 10.4028/www.scientific.net/msf.426-432.2999

Google Scholar

[14] R. Rai, A. De, H.K.D.H. Bhadeshia, T. DebRoy, Review: Friction stir welding tools, Sci. Technol. Weld. Joi. 16 (2011) 325-342.

DOI: 10.1179/1362171811y.0000000023

Google Scholar

[15] D. Sorgente, L.D. Scintilla, G. Palumbo, L. Tricarico, Blow forming of AZ31 magnesium alloy at elevated temperatures Int.J.Mater.Form. 3 (2009) 13-19.

DOI: 10.1007/s12289-009-0411-2

Google Scholar

[16] D.-t. Zhang, F. Xiong, W.-w. Zhang, C. Qiu, W. Zhang, Superplasticity of AZ31 magnesium alloy prepared by friction stir processing T. Nonferr. Metal. Soc. 21 (2011) 1911-1916.

DOI: 10.1016/s1003-6326(11)60949-7

Google Scholar

[17] A.W. El-Morsy, K.I. Manabe, H. Nishimura, Superplastic forming of AZ31 magnesium alloy sheet into a rectangular pan Mater. Trans. 43 (2002) 2443-2448.

DOI: 10.2320/matertrans.43.2443

Google Scholar

[18] W. Polini, U. Prisco, The estimation of the diameter error in bar turning: A comparison among three cutting force models Int. J. Mach. Tool. Manu. 22 (2003) 465-474.

DOI: 10.1007/s00170-003-1563-8

Google Scholar

[19] K. Geels, Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing, ASTM International, West Conshohocken, PA, 2007.

DOI: 10.1520/mnl46-eb

Google Scholar

[20] M.K. Khraisheh, H.M. Zbib, C.H. Hamilton, A.E. Bayoumi, Constitutive modeling of superplastic deformation. Part I: Theory and experiments Int. J. Plasticity 13 (1997) 143-164.

DOI: 10.1016/s0749-6419(97)00005-3

Google Scholar

[21] N.V. Thuramalla, M.K. Khraisheh, Multiscale - Based optimization of superplastic forming, in: Transactions of the North American Manufacturing Research Institute, Charlotte NC 2004. 637-643.

Google Scholar

[22] F.K. Abu-Farha, M.K. Khraisheh, Mechanical characteristics of superplastic deformation of AZ31Magnesium alloy J. Mater. Eng. Perform. 16 (2007) 192-199.

DOI: 10.1007/s11665-007-9031-5

Google Scholar

[23] E.M. Taleff, L.G. Hector Jr, R. Verma, P.E. Krajewski, J.K. Chang, Material models for simulation of superplastic Mg alloy sheet forming J. Mater. Eng. Perform. 19 (2010) 488-494.

DOI: 10.1007/s11665-010-9612-6

Google Scholar

[24] Y. Yu, P. Jiang, C. Li, C. Chen, Gas blow forming of AZ31 magnesium alloy sheet in a heart-shaped closed die, in 6th International Forum on Strategic Technology (IFOST) Harbin 2011 186-189.

DOI: 10.1109/ifost.2011.6020999

Google Scholar

[25] P. Wang, L.H. Wu, S.K. Guan, Effect of initial microstructure on superplastic deformation of AZ70 magnesium alloy, T. Nonferr. Metal. Soc. 20 (2010) s527-s532.

DOI: 10.1016/s1003-6326(10)60532-8

Google Scholar