[1]
K.U. Kainer, Magnesium alloys and technology, Wiley-VCH GmbH, Weinheim, 2003.
Google Scholar
[2]
B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha, M.A. Omar, Friction stir processing of commercial AZ31 magnesium alloy J. Mater. Process. Tech. 191 (2007) 77-81.
DOI: 10.1016/j.jmatprotec.2007.03.045
Google Scholar
[3]
Y. Luo, S.G. Luckey, P.A. Friedman, Y. Peng, Development of an advanced superplastic forming process utilizing a mechanical pre-forming operation Int. J. Mach. Tool. Manu. 48 (2008) 1509-1518.
DOI: 10.1016/j.ijmachtools.2007.12.010
Google Scholar
[4]
M.K. Khraisheh, F.K. Abu-Farha, M.A. Nazzal, K.J. Weinmann, Combined Mechanics-Materials Based Optimization of Superplastic Forming of Magnesium AZ31 Alloy CIRP Ann.-Manuf. Techn. 55 (2006) 233-236.
DOI: 10.1016/s0007-8506(07)60405-3
Google Scholar
[5]
J.A. Carpenter Jr, J. Jackman, L. Naiyi, R.J. Osborne, B.R. Powell, P. Sklad, Automotive Mg research and development in North America Mater. Sci. Forum 546-549 (2007) 11-24.
DOI: 10.4028/www.scientific.net/msf.546-549.11
Google Scholar
[6]
G. Song, A. Atrens, Recent insights into the mechanism of magnesium corrosion and research suggestions Adv. Eng. Mater. 9 (2007) 177-183.
DOI: 10.1002/adem.200600221
Google Scholar
[7]
C. Meola, G. Giorleo, U. Prisco, Experimental evaluation of properties of cross-linked polyethylene Mater. Manuf. Process. 18 (2003) 135-144.
DOI: 10.1081/amp-120017595
Google Scholar
[8]
A. Pardo, P. Casajús, M. Mohedano, A.E. Coy, F. Viejo, B. Torres, E. Matykina, Corrosion protection of Mg/Al alloys by thermal sprayed aluminium coatings Appl. Surf. Sci. 255 (2009) 6968-6977.
DOI: 10.1016/j.apsusc.2009.03.022
Google Scholar
[9]
W.J. Kim, S.W. Chung, C.S. Chung, D. Kum, Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures Acta Mater. 49 (2001) 3337-3345.
DOI: 10.1016/s1359-6454(01)00008-8
Google Scholar
[10]
F.H. Froes, D. Eliezer, E. Aghion, The science, technology, and applications of magnesium Jom-J. Min. Met. Mat. S. 50 (1998) 30-34.
DOI: 10.1007/s11837-998-0411-6
Google Scholar
[11]
R.S. Mishra, Z.Y. Ma, Friction stir welding and processing Mater. Sci. Eng. 50 (2005) 1-78P.
Google Scholar
[12]
C. Bitondo, U. Prisco, A. Squilace, P. Buonadonna, G. Dionoro, Friction-stir welding of AA 2198 butt joints: Mechanical characterization of the process and of the welds through DOE analysis Int. J. Adv. Manuf. Tech. 53 (2011) 505-516.
DOI: 10.1007/s00170-010-2879-9
Google Scholar
[13]
A.J. Ramirez, M.C. Juhas, Microstructural evolution in Ti-6Al-4V friction stir welds Mater. Sci. Forum, 426-432 (2003) 2999-3004
DOI: 10.4028/www.scientific.net/msf.426-432.2999
Google Scholar
[14]
R. Rai, A. De, H.K.D.H. Bhadeshia, T. DebRoy, Review: Friction stir welding tools, Sci. Technol. Weld. Joi. 16 (2011) 325-342.
DOI: 10.1179/1362171811y.0000000023
Google Scholar
[15]
D. Sorgente, L.D. Scintilla, G. Palumbo, L. Tricarico, Blow forming of AZ31 magnesium alloy at elevated temperatures Int.J.Mater.Form. 3 (2009) 13-19.
DOI: 10.1007/s12289-009-0411-2
Google Scholar
[16]
D.-t. Zhang, F. Xiong, W.-w. Zhang, C. Qiu, W. Zhang, Superplasticity of AZ31 magnesium alloy prepared by friction stir processing T. Nonferr. Metal. Soc. 21 (2011) 1911-1916.
DOI: 10.1016/s1003-6326(11)60949-7
Google Scholar
[17]
A.W. El-Morsy, K.I. Manabe, H. Nishimura, Superplastic forming of AZ31 magnesium alloy sheet into a rectangular pan Mater. Trans. 43 (2002) 2443-2448.
DOI: 10.2320/matertrans.43.2443
Google Scholar
[18]
W. Polini, U. Prisco, The estimation of the diameter error in bar turning: A comparison among three cutting force models Int. J. Mach. Tool. Manu. 22 (2003) 465-474.
DOI: 10.1007/s00170-003-1563-8
Google Scholar
[19]
K. Geels, Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing, ASTM International, West Conshohocken, PA, 2007.
DOI: 10.1520/mnl46-eb
Google Scholar
[20]
M.K. Khraisheh, H.M. Zbib, C.H. Hamilton, A.E. Bayoumi, Constitutive modeling of superplastic deformation. Part I: Theory and experiments Int. J. Plasticity 13 (1997) 143-164.
DOI: 10.1016/s0749-6419(97)00005-3
Google Scholar
[21]
N.V. Thuramalla, M.K. Khraisheh, Multiscale - Based optimization of superplastic forming, in: Transactions of the North American Manufacturing Research Institute, Charlotte NC 2004. 637-643.
Google Scholar
[22]
F.K. Abu-Farha, M.K. Khraisheh, Mechanical characteristics of superplastic deformation of AZ31Magnesium alloy J. Mater. Eng. Perform. 16 (2007) 192-199.
DOI: 10.1007/s11665-007-9031-5
Google Scholar
[23]
E.M. Taleff, L.G. Hector Jr, R. Verma, P.E. Krajewski, J.K. Chang, Material models for simulation of superplastic Mg alloy sheet forming J. Mater. Eng. Perform. 19 (2010) 488-494.
DOI: 10.1007/s11665-010-9612-6
Google Scholar
[24]
Y. Yu, P. Jiang, C. Li, C. Chen, Gas blow forming of AZ31 magnesium alloy sheet in a heart-shaped closed die, in 6th International Forum on Strategic Technology (IFOST) Harbin 2011 186-189.
DOI: 10.1109/ifost.2011.6020999
Google Scholar
[25]
P. Wang, L.H. Wu, S.K. Guan, Effect of initial microstructure on superplastic deformation of AZ70 magnesium alloy, T. Nonferr. Metal. Soc. 20 (2010) s527-s532.
DOI: 10.1016/s1003-6326(10)60532-8
Google Scholar