Numerical Study of Radiation and Temperature Phenomena for Improved Super-Plastic Sheet Metal Forming

Article Preview

Abstract:

In most super-plastic forming (SPF) investigations the focus is usually on the material aspects. In this paper the authors develop a model to improve the heat management of SPF. The model presented improved process possibilities. The improved design involves selective application of heat to the material. Final product shape can easily be controlled by accurate temperature control of the work piece. Numerical simulation has been carried out on various components including a ‘top hat shape‘ and a heat exchanger part. Simulation comparisons are made between selective heating and conventional processing, where all of the formed material is at the same temperature, and greater process efficiency of the selective heating approach is demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-179

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.G. Nieh, J. Wadsworth, O.D. Sherby: Superplasticity in Metals and Ceramics, Cambridge University Press, (1997), .

Google Scholar

[2] T. Altan: Metal forming: fundamentals and applications, ASM series in metal processing, American Society of Metals, Metals Park (1983), 353.

Google Scholar

[3] B.H. Cheong, J. Lin, A.A. Ball: Modelling of hardening due to grain growth for a superplastic alloy, Journal of Materials Processing Technology, 119, 1-3 (2001), 361-365.

DOI: 10.1016/s0924-0136(01)00929-3

Google Scholar

[4] A. Ghosh, C. Hamilton: Mechanical behavior and hardening characteristics of a superplastic Ti-6AI-4V alloy, Metallurgical and Materials Transactions A, 10, 6 (1979), 699-706.

DOI: 10.1007/bf02658391

Google Scholar

[5] J. Shang: THERMO-MECHANICAL LIFE ASSESMENT OF SUPERPLASTIC FORMING TOOLS, School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham, Doctor of Philosophy, (2005).

Google Scholar

[6] B. Abdulhay, B. Bourouga, C. Dessain: Experimental and theoretical study of thermal aspects of the hot stamping process, Applied Thermal Engineering, 31, 5 674-685.

DOI: 10.1016/j.applthermaleng.2010.11.010

Google Scholar

[7] P. Hein, J. Wilsius: Status and Innovation Trends in Hot Stamping of USIBOR 1500 P, STEEL RESEARCH INTERNATIONAL, 79, 2 (2008), 85-91.

DOI: 10.1002/srin.200806321

Google Scholar

[8] H. Hoffmann, H. So, H. Steinbeiss: Design of Hot Stamping Tools with Cooling System, CIRP Annals - Manufacturing Technology, 56, 1 (2007), 269-272.

DOI: 10.1016/j.cirp.2007.05.062

Google Scholar

[9] H. Karbasian, A.E. Tekkaya: A review on hot stamping, Journal of Materials Processing Technology, 210, 15 (2010), 2103-2118.

DOI: 10.1016/j.jmatprotec.2010.07.019

Google Scholar

[10] H. So, H. Hoffmann: Design of Hot Stamping Tools and Blanking Strategies of Ultra High Strength Steels, EKC2008 Proceedings of the EU-Korea Conference on Science and Technology, Springer Berlin Heidelberg, 124, (2008).

DOI: 10.1007/978-3-540-85190-5_33

Google Scholar

[11] A. Jocelyn, A. Kar, A. Fanourakis, T. Flower, M. Ackerman, A. Keevil, J. Way: From technology push, to industrial pull: superplastic forming and diffusion bonding using lasers, Materialwissenschaft und Werkstofftechnik, 40, 8 (2009), 601-605.

DOI: 10.1002/mawe.200800359

Google Scholar

[12] D. Sanders: Reinforced ceramic dies for superplastic forming operations, Journal of Materials Engineering and Performance, 13, 6 (2004), 753-757.

DOI: 10.1361/10599490421376

Google Scholar

[13] R.V. Curtis: The suitability of dental investment materials as dies for superplastic forming of medical and dental prostheses, Materialwissenschaft und Werkstofftechnik, 39, 4-5 (2008), 322-326.

DOI: 10.1002/mawe.200800298

Google Scholar

[14] F. Tondini, P. Bosetti, S. Bruschi: AN EXPERIMENTAL-NUMERICAL PROCEDURE TO IDENTIFY HEAT TRANSFER COEFFICIENT IN HOT STAMPING PROCESSES, 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal, (2009).

Google Scholar

[15] A. Jocelyn, A. Kar, A. Fanourakis, T. Flower, M. Ackerman, A. Keevil, J. Way: Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers, Journal of Materials Engineering and Performance, 19, 4 (2010), 527-532.

DOI: 10.1007/s11665-010-9619-z

Google Scholar

[16] E.-L. Odenberger, R. Pederson, M. Oldenburg: Thermo-mechanical material response and hot sheet metal forming of Ti-6242, Materials Science and Engineering: A, 489, 1-2 (2008), 158-168.

DOI: 10.1016/j.msea.2007.12.047

Google Scholar

[17] M.J. Tan, X.J. Zhu: Microstructure evolution of CP titanium during high temperature deformation, Archives of Materials Science and Engineering, 28, 1 (2007), 5 - 11.

Google Scholar

[18] C. Leyens, M. Peters: Titanium and Titanium Alloys: Fyndamentals and Applications, (2005), .

Google Scholar

[19] http://www.makeitfrom.com/data/?material=Titanium_Grade_5 (08.03.2011).

Google Scholar

[20] Y.A. Cengel, A.J. Ghajar: Heat and Mass Transfer: Fundamentals and Applications, (2011), .

Google Scholar

[21] J.-H. Cheng: The determination of material parameters from superplastic inflation tests, Journal of Materials Processing Technology, 58, 2-3 (1996), 233-246.

DOI: 10.1016/0924-0136(95)02128-0

Google Scholar

[22] P.J. Spence, R.G. Milburn: A method and apparatus for superplastically forming a workpiece, pat. GB20010016061 20010630 (2002).

Google Scholar

[23] M. Mis, R. Hall, J. Spence, N. Emekwuru: Numerical and Physical modelling of plastic deformation and heat phenomena in superplastic forming tools for process improvement (paper submitted), Metal Forming, Krakow, (2012).

DOI: 10.4028/www.scientific.net/msf.735.170

Google Scholar

[24] F. Tikal, F. Jandos, M. Duchek: Numerické simulace vlivu sálání pecní vyzdívky na ingoty z materiálu 34CrNiMo6 20th Anniversary International Conference on Metallurgy and Materials, Hotel Voroněž, Brno, Czech Republic, (2011).

Google Scholar

[25] M.S. Corporation: Marc Volume A: Theory and User Information, MSC.Software Corporation, U. S. A., (2010).

Google Scholar

[26] R.W. DiRaddo, A. Meddad: Sensitivity of operating conditions and material properties for thermoforming process, Plastics, rubber and composites, 29, 4 (2000), 163-167.

DOI: 10.1179/146580100101540914

Google Scholar

[27] M. Assael, S. Botsios, K. Gialou, I. Metaxa: Thermal Conductivity of Polymethyl Methacrylate (PMMA) and Borosilicate Crown Glass BK7, International Journal of Thermophysics, 26, 5 (2005), 1595-1605.

DOI: 10.1007/s10765-005-8106-5

Google Scholar

[28] Y. Chen: A STUDY OF THE ROLE IN FRICTION IN SUPERPLASTIC BLOW FORMING OF ALLOY SHEET, School of Engineering Built Environment, University of Wolverhampton, Wolverhampton, Doctor of Philosophy, (2005).

Google Scholar

[29] F.R. Hall, P.J. Spence, C. Kenward: Heating Apparathus and Method, pat. WO2010GB51261 20100730 (2011).

Google Scholar