[1]
T.G. Nieh, J. Wadsworth, O.D. Sherby: Superplasticity in Metals and Ceramics, Cambridge University Press, (1997), .
Google Scholar
[2]
T. Altan: Metal forming: fundamentals and applications, ASM series in metal processing, American Society of Metals, Metals Park (1983), 353.
Google Scholar
[3]
B.H. Cheong, J. Lin, A.A. Ball: Modelling of hardening due to grain growth for a superplastic alloy, Journal of Materials Processing Technology, 119, 1-3 (2001), 361-365.
DOI: 10.1016/s0924-0136(01)00929-3
Google Scholar
[4]
A. Ghosh, C. Hamilton: Mechanical behavior and hardening characteristics of a superplastic Ti-6AI-4V alloy, Metallurgical and Materials Transactions A, 10, 6 (1979), 699-706.
DOI: 10.1007/bf02658391
Google Scholar
[5]
J. Shang: THERMO-MECHANICAL LIFE ASSESMENT OF SUPERPLASTIC FORMING TOOLS, School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham, Doctor of Philosophy, (2005).
Google Scholar
[6]
B. Abdulhay, B. Bourouga, C. Dessain: Experimental and theoretical study of thermal aspects of the hot stamping process, Applied Thermal Engineering, 31, 5 674-685.
DOI: 10.1016/j.applthermaleng.2010.11.010
Google Scholar
[7]
P. Hein, J. Wilsius: Status and Innovation Trends in Hot Stamping of USIBOR 1500 P, STEEL RESEARCH INTERNATIONAL, 79, 2 (2008), 85-91.
DOI: 10.1002/srin.200806321
Google Scholar
[8]
H. Hoffmann, H. So, H. Steinbeiss: Design of Hot Stamping Tools with Cooling System, CIRP Annals - Manufacturing Technology, 56, 1 (2007), 269-272.
DOI: 10.1016/j.cirp.2007.05.062
Google Scholar
[9]
H. Karbasian, A.E. Tekkaya: A review on hot stamping, Journal of Materials Processing Technology, 210, 15 (2010), 2103-2118.
DOI: 10.1016/j.jmatprotec.2010.07.019
Google Scholar
[10]
H. So, H. Hoffmann: Design of Hot Stamping Tools and Blanking Strategies of Ultra High Strength Steels, EKC2008 Proceedings of the EU-Korea Conference on Science and Technology, Springer Berlin Heidelberg, 124, (2008).
DOI: 10.1007/978-3-540-85190-5_33
Google Scholar
[11]
A. Jocelyn, A. Kar, A. Fanourakis, T. Flower, M. Ackerman, A. Keevil, J. Way: From technology push, to industrial pull: superplastic forming and diffusion bonding using lasers, Materialwissenschaft und Werkstofftechnik, 40, 8 (2009), 601-605.
DOI: 10.1002/mawe.200800359
Google Scholar
[12]
D. Sanders: Reinforced ceramic dies for superplastic forming operations, Journal of Materials Engineering and Performance, 13, 6 (2004), 753-757.
DOI: 10.1361/10599490421376
Google Scholar
[13]
R.V. Curtis: The suitability of dental investment materials as dies for superplastic forming of medical and dental prostheses, Materialwissenschaft und Werkstofftechnik, 39, 4-5 (2008), 322-326.
DOI: 10.1002/mawe.200800298
Google Scholar
[14]
F. Tondini, P. Bosetti, S. Bruschi: AN EXPERIMENTAL-NUMERICAL PROCEDURE TO IDENTIFY HEAT TRANSFER COEFFICIENT IN HOT STAMPING PROCESSES, 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal, (2009).
Google Scholar
[15]
A. Jocelyn, A. Kar, A. Fanourakis, T. Flower, M. Ackerman, A. Keevil, J. Way: Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers, Journal of Materials Engineering and Performance, 19, 4 (2010), 527-532.
DOI: 10.1007/s11665-010-9619-z
Google Scholar
[16]
E.-L. Odenberger, R. Pederson, M. Oldenburg: Thermo-mechanical material response and hot sheet metal forming of Ti-6242, Materials Science and Engineering: A, 489, 1-2 (2008), 158-168.
DOI: 10.1016/j.msea.2007.12.047
Google Scholar
[17]
M.J. Tan, X.J. Zhu: Microstructure evolution of CP titanium during high temperature deformation, Archives of Materials Science and Engineering, 28, 1 (2007), 5 - 11.
Google Scholar
[18]
C. Leyens, M. Peters: Titanium and Titanium Alloys: Fyndamentals and Applications, (2005), .
Google Scholar
[19]
http://www.makeitfrom.com/data/?material=Titanium_Grade_5 (08.03.2011).
Google Scholar
[20]
Y.A. Cengel, A.J. Ghajar: Heat and Mass Transfer: Fundamentals and Applications, (2011), .
Google Scholar
[21]
J.-H. Cheng: The determination of material parameters from superplastic inflation tests, Journal of Materials Processing Technology, 58, 2-3 (1996), 233-246.
DOI: 10.1016/0924-0136(95)02128-0
Google Scholar
[22]
P.J. Spence, R.G. Milburn: A method and apparatus for superplastically forming a workpiece, pat. GB20010016061 20010630 (2002).
Google Scholar
[23]
M. Mis, R. Hall, J. Spence, N. Emekwuru: Numerical and Physical modelling of plastic deformation and heat phenomena in superplastic forming tools for process improvement (paper submitted), Metal Forming, Krakow, (2012).
DOI: 10.4028/www.scientific.net/msf.735.170
Google Scholar
[24]
F. Tikal, F. Jandos, M. Duchek: Numerické simulace vlivu sálání pecní vyzdívky na ingoty z materiálu 34CrNiMo6 20th Anniversary International Conference on Metallurgy and Materials, Hotel Voroněž, Brno, Czech Republic, (2011).
Google Scholar
[25]
M.S. Corporation: Marc Volume A: Theory and User Information, MSC.Software Corporation, U. S. A., (2010).
Google Scholar
[26]
R.W. DiRaddo, A. Meddad: Sensitivity of operating conditions and material properties for thermoforming process, Plastics, rubber and composites, 29, 4 (2000), 163-167.
DOI: 10.1179/146580100101540914
Google Scholar
[27]
M. Assael, S. Botsios, K. Gialou, I. Metaxa: Thermal Conductivity of Polymethyl Methacrylate (PMMA) and Borosilicate Crown Glass BK7, International Journal of Thermophysics, 26, 5 (2005), 1595-1605.
DOI: 10.1007/s10765-005-8106-5
Google Scholar
[28]
Y. Chen: A STUDY OF THE ROLE IN FRICTION IN SUPERPLASTIC BLOW FORMING OF ALLOY SHEET, School of Engineering Built Environment, University of Wolverhampton, Wolverhampton, Doctor of Philosophy, (2005).
Google Scholar
[29]
F.R. Hall, P.J. Spence, C. Kenward: Heating Apparathus and Method, pat. WO2010GB51261 20100730 (2011).
Google Scholar