A Time-Dependent Material Model for the Simulation of Hot Gas-Pressure Forming of Magnesium Alloy AZ31

Article Preview

Abstract:

A time-dependent material constitutive model is developed for the deformation of wrought Mg AZ31 sheet material at 450°C. This material model is used to simulate gas-pressure bulge forming of AZ31 sheet into hemispherical domes. Finite-element-method (FEM) simulations using this material model are compared against experimental data obtained for dome height as a function of forming time under forming conditions identical to those assumed in the simulations. The time-dependent material model predicts experimental dome heights during forming with a quite useful accuracy. The most significant advantage of the time-dependent material model is that it can address the effect of preheating time on forming. Preheating times shorter than ~120 s produce an increase in forming rate. This material model provides a quantitative means of accounting for that effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

198-203

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Eliezer, E. Aghion, F.H. Froes: Adv. Perform Mater., vol. 5 (1998), pp.201-212.

Google Scholar

[2] M.M. Avedesian and H. Baker: Magnesium and Magnesium Alloys (ASM International, Materials Park (1999).

Google Scholar

[3] E. Aghion, B. Bronfin, D. Eliezer: J. Mater. Process. Tech., vol. 117 (2001), pp.381-385.

Google Scholar

[4] M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, P. Beggs: JOM, vol. 60 (2008), no. 11, pp.57-62.

DOI: 10.1007/s11837-008-0150-8

Google Scholar

[5] M.K. Kulecki: Int. J. Adv. Manuf. Technol., vol. 39 (2008), pp.851-865.

Google Scholar

[6] A.A. Luo: JOM, vol. 54 (2002), no. 2, pp.42-48.

Google Scholar

[7] B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, vol. 302 (2001), pp.37-45.

Google Scholar

[8] A. Levinson, R.K. Mishra, J. Carsley, R.D. Doherty, S.R. Kalidindi, in: Magnesium Technology 2011, ed. W.H. Sillekens et al., Wiley, John & Sons (2011).

DOI: 10.1002/9781118062029.ch72

Google Scholar

[9] R. Verma, L.G. Hector, Jr., P.E. Krajewski, E.M. Taleff: JOM, vol. 61 (2009), no. 8, pp.29-37.

Google Scholar

[10] H. -K. Kim and W. -J. Kim: J. Mater. Sci., vol. 42 (2007), pp.6171-6176.

Google Scholar

[11] I.A. Maksoud, H. Ahmed, J. Rödel: Mater. Sci. Eng. A, vol. 504 (2009), pp.40-48.

Google Scholar

[12] S. Spigarelli and M. El Mehtedi: Mater. Sci. Eng. A, vol. 527 (2010), pp.5708-5714.

Google Scholar

[13] K.E. Tello, A.P. Gerlich, P.F. Mendez: Sci. Technol. Weld. Joi., vol. 15 (2010), pp.260-266.

Google Scholar

[14] E.M. Taleff, L.G. Hector, Jr., R. Verma, P.E. Krajewski, J. -K. Chang: J. Mater. Eng. Perform., vol. 19 (2010), pp.488-494.

Google Scholar

[15] P.A. Sherek, A.J. Carpenter, L.G. Hector, Jr., P.E. Krajewski, J.T. Carter, J. Lasceski, E.M. Taleff, in: Magnesium Technology 2012, ed. S.N. Mathaudhu, Wiley, John & Sons (2012), in press.

DOI: 10.1002/9781118359228.ch55

Google Scholar

[16] ASTM E 112-96: Standard Test Methods for Determining Average Grain Size, ASTM: West Conshohocken, PA. (1996).

Google Scholar

[17] O.D. Sherby and P.M. Burke: Prog. Mater. Sci., vol. 13 (1968), pp.325-390.

Google Scholar

[18] Dassault Systèmes Simulia Corp.: Abaqus (Version 6. 8), Providence, RI (2008).

Google Scholar