Instrumentation and Control of a Bulge Test on a Superplastic Pb-Sn Alloy

Article Preview

Abstract:

Superplasticity is characterized by high elongations under a high strain rate sensibility, and it’s variation with strain rate, temperature and grain size. This parameter is often obtained from uniaxial tensile test. However, superplastic deformation is a biaxial process; hence there is a need to develop a way to get this parameter in a biaxial test. This work aims to set up the instrumentation to record and control a biaxial superplastic forming in a Pb-Sn alloy. The control system project has been divided into tracking variables: strain and pressure. The instrumentation is able to predict the breaking point at the beginning of the superplastic forming process from biaxial testing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-231

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Chandra, Constitutive behavior of superplastic materials, Int. J. Non-Linear Mech. 37 (2000) 461-484.

Google Scholar

[2] N. Ridley, Metals for superplastic forming. Superplastic forming of advanced metallic materials – Methods and applications, Woodhead Publishing Limited Cambridge. (2011) 3-30.

DOI: 10.1533/9780857092779.1.3

Google Scholar

[3] Y. Chen, K. Kibble & R. Hall, X. Huang, Numerical analysis of superplastic blow forming of Ti-6Al-4V alloys, Materials and Design. 22 (2001) 679-685.

DOI: 10.1016/s0261-3069(01)00009-7

Google Scholar

[4] P. Guanabara Junior; L. O. Bueno & G. F. Batalha, Towards a Superplastic Forming of Fe-Mn-Al Alloys. In: International Conference on Advances in Materials and Processing Technologies (AMPT2010), 2010, Paris - France. AIP Conference Proc. Maryland, USA: American Institute of Physics, 2010. v. 1315. p.1683 – 1638 - http://dx.doi.org/10.1063/1.3552435 - ISBN 9780735408715

DOI: 10.1063/1.3552435

Google Scholar

[5] F. Jovane, An approximate analysis of the superplastic forming of a thin circular diaphragm: theory and experiments, Int. J. Mech. Sci. 10 (1968) 403-427.

DOI: 10.1016/0020-7403(68)90005-2

Google Scholar

[6] G. C. Cornfield & R. H. Johnson, The forming of superplastic sheet metal, Int. J. Mech. Sci. 12 (1970) 479-490.

Google Scholar

[7] D.L. Holt, An analysis of the bulging of a superplastic sheet by lateral pressure, Int. J. Mech. Sci. 12 (1970) 491-497.

Google Scholar

[8] Y. Quan & Z. Jun, A mechanical analysis of the superplastic bulging of metal sheet, Mater. Sci. Eng. 84 (1986) 111-125.

DOI: 10.1016/0025-5416(86)90228-4

Google Scholar

[9] H.S. Yang & A.K. Mukherjee, An analysis of the superplastic forming of a circular sheet diaphragm, Int. J. Mech. Sci. 34 (1992) 283-297.

DOI: 10.1016/0020-7403(92)90036-g

Google Scholar

[10] A. Dutta & A.K. Mukherjee, Superplastic forming: An analytical approach, Materials Science Engineering, V. A157 (1992) pp.9-13.

Google Scholar

[11] Y. Chen, K. Kibble, R. Hall & X. Huang, Numerical analysis of superplastic blow forming of Ti-6Al-4V alloys, Materials and Design, v. 22, (2001), pp.679-685

DOI: 10.1016/s0261-3069(01)00009-7

Google Scholar

[12] H-Y Wu, J-H Hwang & C-H Chiu, Deformation characteristics and cavitation during multiaxial blow forming in superplastic 8090 alloy, Journal of Materials Processing Technology, V. 209, (2009), p.1654–1661.

DOI: 10.1016/j.jmatprotec.2008.04.010

Google Scholar

[13] J. Kappes, S. Wagner & M. Schatz, Superplastic sheet metal forming with focus on the warm bulge test and its in-process monitoring, Int. J. Mater. Form 3 (2010) 1135-1138.

DOI: 10.1007/s12289-010-0972-0

Google Scholar

[14] M. A. Sutton; J. J. Orteu & H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements, Springer Science, Business Media, LLC 2009, ISBN 978-0-387-78746-6 .

DOI: 10.1007/978-0-387-78747-3

Google Scholar

[15] M. S. Soliman & K. A. Al-Seif, Compression Testing of Superplastic Lead–Tin Eutectic Alloy at Room Temperature, The Arabian Journal for Science and Engineering, Vol. 30, N. 2B, (2005). pp.177-188

Google Scholar

[16] G. Giuliano; L. Carrino & S. Franchitti, Modelling the free forming of superplastic Pb–Sn60 at constant pressure, Journal of Materials Processing Technology, Vol. 177, n. 1–3, p.95–97, July 2006.

DOI: 10.1016/j.jmatprotec.2006.03.218

Google Scholar

[17] L. Carrino & G. Giuliano, Analysis of superplastic testing by using constant pressure in prismatic die, ICSAM-2000: Int. Conf. on Superplasticity in Advanced Materials, Orlando, USA, Materials Science Forum, v. 357-9, pp.219-4; ISSN 02555476. 2001 ISBN 0878498745

DOI: 10.4028/www.scientific.net/msf.357-359.219

Google Scholar

[18] J. Bonet; A. Gil; R. D. Wood; R. Said & R. Curtis, Simulating superplastic forming, Computer Methods In Applied Mechanics and Engineering, v. 195, p.6580–6603, (2006)

DOI: 10.1016/j.cma.2005.03.012

Google Scholar

[19] M. K. Khraisheh, On the failure characteristics of superplastic sheet materials subjected to gas pressure forming. Scripta materialia. V. 42, n. 3, pp.257-263, 2000.

DOI: 10.1016/s1359-6462(99)00359-0

Google Scholar

[20] S. Franchitti, Analisi e modellazione dei processi di formatura superplastica. Doctor Thesis. Università Degli Studi Di Cassino, Cassino, Italy, 2007, 149 p.

Google Scholar

[21] D. Ollivier, Le formage superplastique associé au soudage par diffusion appliqué à l'alliage à base de titane Ti-6Al-4V pour la fabrication de nacelles aéronautiques. 2003. 235 p. Doctor Thesis – L'École Nationale Supérieure d'Arts et Métiers, Paris, France, 24 april 2003.

Google Scholar