Low Temperature Superplasticity of Ti-6Al-4V Processed by Warm Multidirectional Forging

Article Preview

Abstract:

Multidirectional forging has been developed to produce an ultrafine-grain (UFG) microstructure in the two-phase titanium alloy Ti-6Al-4V. A microstructure with a grain size of 135 nm was attained, enabling low-temperature superplasticity (LTSP) at 550°C. A total elongation of 1000% and strain-rate-sensitivity coefficient m=0.47 were obtained at the optimal strain rate of 2×10-4 s-1. Important features of the microstructure and superplastic behavior of the alloy are summarized in the present work. It is shown that microstructure evolution during low-temperature deformation plays a key role in superplastic flow behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

253-258

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Inagaki, Enhanced superplasticity in high strength Ti alloys, Z. Metallk. 86 (1995) 643-650.

DOI: 10.1515/ijmr-1995-860911

Google Scholar

[2] G.A. Salishchev et al., Development of Ti-6Al-4V sheet with low temperature superplastic properties, J. Mater. Proc. Technol. 116 (2001) 265-268.

DOI: 10.1016/s0924-0136(01)01037-8

Google Scholar

[3] S.V. Zherebtsov et al., Production of submicrocrystalline structure in large-scale Ti-6Al-4V billet by warm severe deformation processing, Scripta Mater. 51 (2004) 1147-1151.

DOI: 10.1016/j.scriptamat.2004.08.018

Google Scholar

[4] Y.G. Ko et al., Low-temperature superplasticity of ultra-fine-grained Ti-6AI-4V processed by equal-channel angular pressing, Metall. Mater. Trans. 37A (2006) 381-391.

DOI: 10.1007/s11661-006-0008-z

Google Scholar

[5] A.V. Sergueeva et al., Superplastic behaviour of ultrafine-grained Ti-6Al-4V alloys, Mater. Sci. Eng. A323 (2002) 318-325.

DOI: 10.1016/s0921-5093(01)01384-3

Google Scholar

[6] O.A. Kaibyshev: Superplasticity of Alloys, Intermetallides and Ceramics (Springer-Verlag, Berlin 1992).

Google Scholar

[7] G.A. Salishchev et al., Submicrocrystalline and nanocrystalline structure formation in materials and search for outstanding superplastic properties, Mater. Sci. Forum 170-172 (1994) 121-130.

DOI: 10.4028/www.scientific.net/msf.170-172.121

Google Scholar

[8] Y. Mishin, C. Herzig, Diffusion in the Ti-Al system, Acta Mater. 48 (2000) 589-623.

DOI: 10.1016/s1359-6454(99)00400-0

Google Scholar

[9] S.L. Semiatin et al., Plastic flow and microstructure evolution during low-temperature superplasticity of ultrafine Ti-6Al-4V sheet material, Metall. Mater. Trans. 41A (2010) 499-512.

DOI: 10.1007/s11661-009-0131-8

Google Scholar

[10] G.A. Sargent et al., Low-temperature coarsening and plastic flow behavior of an a/b titanium billet material with an ultrafine microstructure, Metall. Mater. Trans. 39A (2008) 2949-2964.

DOI: 10.1007/s11661-008-9650-y

Google Scholar

[11] G. Wasserman and I. Greven: Texturen metallischer Werkstoffe (Springer-Verlag, Berlin 1962).

Google Scholar

[12] M.J. Donachie, Jr.: Titamium: a Technical Guide (ASM International, USA 2000).

Google Scholar

[13] A. Arieli, A. Rosen, Superplastic deformation of Ti-6Al-4V, Metall. Trans. 8A (1977) 1591-1596.

DOI: 10.1007/bf02644864

Google Scholar