Effect of Mg Content on High Strain Rate Superplasticity of Al-Mg-Sc-Zr Alloys Subjected to Equal-Channel Angular Pressing

Article Preview

Abstract:

Aluminium alloys with a chemical compositions of Al–5.8%Mg–0.52%Mn–0.2%Sc–0.07%Zr–0.16%Fe-0.1%Si and Al-5.4%Mg-0.34%Mn-0.2%Sc-0.07%Zr-0.07%Fe-0.02Si (in weight %), denoted as 1570 and 1570C, respectively, were processed by equal-channel angular pressing (ECAP) at 300°C up to strain ε~12. Extensive grain refinement provided the formation of fully recrystallized structure with the average grain sizes of 0.7 and 0.6 μm, respectively. Tensile tests were carried out in the temperature interval 200–550oC at strain rates ranging from 10-4 to 10-1 s-1. Very high tensile elongations (>1000%) were achieved in the both alloys at T350oC and strain rates higher than 10-3 s-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

265-270

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.G. Nieh, L. M.Hsiung, J. Wadsworth, R.Kaibyshev R. Acta Mater. Vol.46 (1998) 2789-2800.

Google Scholar

[2] R. Kaibyshev, E. Avtokratova, A.Apollonov, R. Davies, Scr. Mater. Vol.54 (2006) pp.2119-2124.

Google Scholar

[3] Y-Y. Li, W.-H.Wanga, Y.-F. Hsu, Sh. Trong, Mater. Sci. Eng. A 497 (2008) 10–17.

Google Scholar

[4] F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh: Scripta Mater. Vol. 50 (2004) p.511–516.

Google Scholar

[5] F. Musin, R.Kaibyshev, Y. Motohashi, G. Itoh, Metall. Mater. Trans. Vol. 35A (2004) pp.2383-2392.

Google Scholar

[6] Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes and T. Langdon: Acta. Mater. Vol. 48 (2000), pp.3633-3640.

DOI: 10.1016/s1359-6454(00)00182-8

Google Scholar

[7] M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, and T.G. Langdon, Acta Mater. vol. 49 (2001) pp.3829-3838.

Google Scholar

[8] S. Lee, A Utsunomiya, H. Akamatsu, K. Naishi, M. Furukawa, Z. Horita and T.G. Langdon, Acta Mater. vol. 50 (2002) pp.553-564.

Google Scholar

[9] F.C. Liu and Z.Y. Ma, Scr. Mater. Vol. 62 (2010) p.125–128.

Google Scholar

[10] F.C. Liu and Z.Y. Ma, Scr. Mater. Vol. 59 (2008) p.882–885.

Google Scholar

[11] Z.Y. Ma, F.C. Liu, R.S. Mishra, Acta Mater. Vol.58 (2010) p.4693–4704.

Google Scholar

[12] Yu. A. Filatov, V.I. Yelagin, V.V. Zakharov, Mater Sci Eng Vol.280A (2000) pp.97-101.

Google Scholar

[13] R. Kaibyshev, E. Avtokratova, O. Sitdikov, J. Phys.: Conf. Series 240 (2010).

DOI: 10.1088/1742-6596/240/1/012120

Google Scholar

[14] E. Avtokratova, O. Sitdikov, M. Markushev, R. Mulyukov, Mater.Sci.Eng. Vol.538A (2012) pp.386-390.

Google Scholar

[15] R. Z. Valiev, T. G. Langdon, Progr. Mater. Sci. Vol. 51 (2006), p.881–981.

Google Scholar

[16] J. Pilling and N. Ridley: Superplasticity in Crystaline Solids, The Institute of Metals, London, 1989, p.214.

Google Scholar

[17] O.A. Kaibyshev: Superplasticity of Alloys, Intermetallides, and Ceramics, Springer-Verlag, Berlin, 1992, p.316.

Google Scholar