Low-Temperature Superplasticity in an Al–Mg–Mn Alloy Subjected to ECAP and Subsequent Isothermal Rolling

Article Preview

Abstract:

An ultra-fine grained structure with an average size of ~ 1 μm was produced in a commercial Al–5.4%Mg–0.5%Mn–0.1%Zr–0.12%Si–0.014%Fe alloy by hot equal-channel angular pressing (ECAP) followed by isothermal rolling (IR). It was found that in the strain rate interval from 5.6×10-4 to 2.8×10-2 s-1 the alloy exhibits a low-temperature superplasticity with elongation-to-failure exceeding 400% and the strain rate sensitivity coefficient of ~0.3. The highest elongation-to-failure of ~ 620% appeared at a temperature of ~ 275°C and an initial strain rate of ~ 5.6×10-3 s-1. The relationship between superplastic properties and microstructural evolution of the examined alloy is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

347-352

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.R. Davis, Aluminum and aluminum alloys, ASM International, Materials Park, 1993.

Google Scholar

[2] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics, first ed. Cambrige University Press, New York, 1997.

Google Scholar

[3] O.A. Kaibyshev, Superplasticity of Alloys, Intermetallics, and Ceramics, Springer-Verlag, Berlin, 1992.

Google Scholar

[4] M. Kawasaki, T.G. Langdon, J. Mater. Sci. 42 (2007) 1782–1796.

Google Scholar

[5] Y. Takayama, T. Itoh, H. Kato, H. Watanabe, Mater. Trans. 43 (2002) 2378–2384.

Google Scholar

[6] K.-T. Park, D.-Y. Hwang, Y.-K. Lee, Y.-K. Kim, D.H.M. Shin, Mater. Sci. Eng. 341 (2003) 273–281.

Google Scholar

[7] F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh, Met. Mater. Trans. A 35A (2004) 2383–2392.

Google Scholar

[8] K.-T. Park, D.-Y. Hwang, S.-Y. Chang, D.H. Shin: Met. Mater. Trans. A 33A (2002) 2859–2867.

Google Scholar

[9] S. Ota, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, Mater. Trans. 43 (2002) 2364–2369.

DOI: 10.2320/matertrans.43.2364

Google Scholar

[10] J. Royset, N. Ryum, Int. Mater. Rev. 50 (2005) 19–44.

Google Scholar

[11] I. Nikulin, A. Kipelova, S. Malopheyev, R. Kaibyshev, Acta Mater. 60 (2012) 487–497.

Google Scholar

[12] K.T. Park, H.J. Lee, C.S. Lee, W.J. Nam, D.H. Shin, Scr. Mater. 51 (2004) 479–483.

Google Scholar

[13] I. Nikulin, R. Kaibyshev, T. Sakai, Mater. Sci. Eng. A 407 (2005) 62–70.

Google Scholar

[14] K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 46 (1998) 1589–1599.

Google Scholar

[15] Z. Jia, G. Hu, B. Forbord, J.K. Solberg, Mater. Sci. Eng. A 444 (2007) 284-290.

Google Scholar