Superplasticity in a 5024 Aluminium Alloy Processed by Severe Plastic Deformation

Article Preview

Abstract:

The superplastic behaviour of an Al-4.6%Mg-0.35%Mn-0.2%Sc-0.09%Zr alloy was studied in the temperature range 250-500°C at strain rates ranging from 10-4 to 10-1 s-1. The AA5024 was subjected to equal channel angular pressing (ECAP) at 300°C up to ~12. The highest elongation-to-failure of ∼3300% was attained at a temperature of 450°C and an initial strain rate of 5.6×10-1 s-1. Regularities of superplastic behaviour of the 5024 aluminium alloy are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

353-358

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, T.G. Langdon, Prog.Mater.sci. Vol. 51 (2006), p.881.

Google Scholar

[2] S. Ferrasse, V.M. Segal, F. Alford, J. Kardokus, S. Strothers, Mater.Sci.Eng.: Vol. A 493 (2008) p.130.

Google Scholar

[3] Yu.A. Filatov, V.I. Yelagin, V.V. Zakharov, Mater.Sci.Eng. Vol. A280 (2000) 97–101.

Google Scholar

[4] R. Kaibyshev, A. Mogucheva, A. Dubyna, Mater. Sci. Forum Vol. 706-709 (2012), p.55.

Google Scholar

[5] Y.-Y. Li, W.-H.Wang, Y.-F. Hsu, Sh. Trong, Mater.Sci.Eng.: Vol.A 497 (2008) p.10.

Google Scholar

[6] T.G. Nieh, L.M. Hsiung, J.Wadsworth and R.Kaibyshev, Acta Mater. Vol.46 (1998) p.2789.

Google Scholar

[7] R.Kaibyshev, E.Avtokratova, A.Apollonov, R. Davies. Scr. Mater.: Vol.54 (2006) p.2119.

Google Scholar

[8] F.Musin, R.Kaibyshev, Y.Motohashi, G.Itoh, Metall.Mater.Trans.: Vol.35A (2004) p.2383.

Google Scholar

[9] Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes, T. G. Langdon, Acta Mater. Vol.48 (2000) p.3633.

Google Scholar

[10] S. Lee. A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, Acta Mater. Vol.50 (2002) p.553.

DOI: 10.1016/s1359-6454(01)00368-8

Google Scholar

[11] F.C. Liu and Z.Y. Ma, Scr. Mater. Vol.59 (2008) p.882.

Google Scholar

[12] F.C. Liu, Z.Y. Ma, L.Q. Chen, Scr.Mater. Vol. 60 (2009) p.968.

Google Scholar

[13] S. Ota, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon: Mater.Trans.: Vol. 43 (2002) p.2364.

DOI: 10.2320/matertrans.43.2364

Google Scholar

[14] A. Mogucheva and R. Kaibyshev, Mater. Sci. For. Vols. 667-669 (2011) p.949.

Google Scholar

[15] A. Mogucheva, R. Kaibyshev, Adv. Mater. Res.: Vols. 89-91 (2010) p.389.

Google Scholar

[16] M. Kamachi, M. Furukawa, Z. Horita, T.G. Langdon: Mater. Sci. Eng.A. 361 (2003), p.258.

Google Scholar

[17] J. Pilling and N. Ridley: Superplasticity in Crystaline Solids, The Institute of Metals, London, 1989, p.214.

Google Scholar

[18] O.A. Kaibyshev: Superplasticity of Alloys, Intermetallides, and Ceramics, Springer-Verlag, Berlin, 1992, p.316.

Google Scholar

[19] M. Ferry, N.E. Hamilton, F.J. Humphreys, Acta Mater.: Vol. 53 (2005) p.1097.

Google Scholar