Preparation of Polyacrylonitrile Nanofibers with Controlled Morphology Using a Constant-Current Electrospinning System for Filter Applications

Article Preview

Abstract:

Polyacrylonitrile (PAN) fibers with average diameters in the range 100 nm with beaded morphology were prepared by a constant current electrospinning system. The fiber morphology could be easily varied by controlling the flow rate and electric current during the electrospinning process without changing the precursor solution. It was found that the use of lower flow rates resulted in more beaded fibers while the number of beads increases. The electric current could control the fiber morphology in which the beaded number (the number of beads or the beaded fibers) decreased as the electric current increased. It was also found that diameter and length of the beaded fibers increases as the electric current increases. Therefore, these results are able to be applied to find optimal conditions in obtaining high performance filter media.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-165

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.D. Schiffman, C.L. Schauer, A review: Electrospinning of biopolymer nanofibers and their applications, Polym. Rev. 48 (2008) 317-352.

DOI: 10.1080/15583720802022182

Google Scholar

[2] D. Li, Y.N. Xia, Electrospinning of nanofibers: Reinventing the wheel?, Adv. Mat. 16 (2004) 1151-1170.

DOI: 10.1002/adma.200400719

Google Scholar

[3] A. Frenot, I.S. Chronakis, Polymer nanofibers assembled by electrospinning, Curr. Opin. Colloid Interface Sci. 8 (2003) 64-75.

DOI: 10.1016/s1359-0294(03)00004-9

Google Scholar

[4] W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology 17 (2006) R89-R106.

DOI: 10.1088/0957-4484/17/14/r01

Google Scholar

[5] M.M. Munir, A.B. Suryamas, F. Iskandar, K. Okuyama, Scaling law on particle-to-fiber formation during electrospinning, Polymer 50 (2009) 4935-4943.

DOI: 10.1016/j.polymer.2009.08.011

Google Scholar

[6] A.L. Yarin, S. Koombhongse, D.H. Reneker, Bending instability in electrospinning of nanofibers, J. Appl. Phys. 89 (2001) 3018-3026.

DOI: 10.1063/1.1333035

Google Scholar

[7] J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C. Beck Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer 42 (2001) 261-272.

DOI: 10.1016/s0032-3861(00)00250-0

Google Scholar

[8] R. Samatham, K.J. Kim, Electric current as a control variable in the electrospinning process, Polym. Eng. Sci. 46 (2006) 954-959.

DOI: 10.1002/pen.20565

Google Scholar

[9] S.V. Fridrikh, J.H. Yu, M.P. Brenner, G.C. Rutledge, Controlling the fiber diameter during electrospinning, Phys. Rev. Lett. 90 (2003) 144502/144501-144502/144504.

DOI: 10.1103/physrevlett.90.144502

Google Scholar

[10] A.F. Spivak, Y.A. Dzenis, D.H. Reneker, Model of steady state jet in the electrospinning process, Mech. Res. Commun. 27 (2000) 37-42.

DOI: 10.1016/s0093-6413(00)00060-4

Google Scholar

[11] M.M. Munir, F. Iskandar, Khairurrijal, K. Okuyama, High performance electrospinning system for fabricating highly uniform polymer nanofibers, Rev. Sci. Instrum. 80 (2009) 026106.

DOI: 10.1063/1.3079688

Google Scholar

[12] M.M. Munir, F. Iskandar, Khairurrijal, K. Okuyama, A constant-current electrospinning system for production of high quality nanofibers, Rev. Sci. Instrum. 79 (2008) 093904.

DOI: 10.1063/1.2981699

Google Scholar

[13] K.S. Perera, M.A.K.L. Dissanayake, S. Skaarup, K. West, Application of polyacrylonitrile-based polymer electrolytes in rechargeable lithium batteries, J. Solid State Electrochem. 12 (2008) 873-877.

DOI: 10.1007/s10008-007-0479-x

Google Scholar

[14] J. Jang, J. Bae, E. Park, Polyacrylonitrile nanofibers: Formation mechanism and applications as a photoluminescent material and carbon-nanofiber precursor, Adv. Funct. Mater. 16 (2006) 1400-1406.

DOI: 10.1002/adfm.200500598

Google Scholar

[15] R. Samatham, I.S. Park, K.J. Kim, J.D. Nam, N. Whisman, J. Adams, Electrospun nanoscale polyacrylonitrile artificial muscle, Smart Mater. Struct. 15 (2006) N152-N156.

DOI: 10.1088/0964-1726/15/6/n03

Google Scholar

[16] Y. Hong, D. Li, J. Zheng, G. Zou, Sol-gel growth of titania from electrospun polyacrylonitrile nanofibres, Nanotechnology 17 (2006) 1986-1993.

DOI: 10.1088/0957-4484/17/8/032

Google Scholar

[17] L. Ji, C. Saquing, S.A. Khan, X. Zhang, Preparation and characterization of silica nanoparticulate- polyacrylonitrile composite and porous nanofibers, Nanotechnology 19 (2008) 085605

DOI: 10.1088/0957-4484/19/8/085605

Google Scholar

[18] K.M. Yun, C.J. Hogan Jr, Y. Matsubayashi, M. Kawabe, F. Iskandar, K. Okuyama, Nanoparticle filtration by electrospun polymer fibers, Chem. Eng. Sci. 62 (2007) 4751-4759.

DOI: 10.1016/j.ces.2007.06.007

Google Scholar

[19] K.M. Yun, A.B. Suryamas, F. Iskandar, L. Bao, H. Niinuma, K. Okuyama, Morphology optimization of polymer nanofiber for applications in aerosol particle filtration, Sep. Purif. Technol. 75 (2010) 340-345.

DOI: 10.1016/j.seppur.2010.09.002

Google Scholar

[20] J.H. He, Y.Q. Wan, J.Y. Yu, Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers, Fibers Polym. 9 (2008) 140-142.

DOI: 10.1007/s12221-008-0023-3

Google Scholar

[21] X.H. Qin, E.L. Yang, N. Li, S.Y. Wang, Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution, J. Appl. Polym. Sci. 103 (2007) 3865-3870.

DOI: 10.1002/app.25498

Google Scholar

[22] F. Dabirian, Y. Hosseini, S.A.H. Ravandi, Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn, J. Text. I. 98 (2007) 237-241.

DOI: 10.1080/00405000701463979

Google Scholar

[23] S.Y. Gu, J. Ren, Q.L. Wu, Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers, Synth. Met. 155 (2005) 157-161.

DOI: 10.1016/j.synthmet.2005.07.340

Google Scholar

[24] R. Jalili, S.A. Hosseini, M. Morshed, The effects of operating parameters on the morphology of electrospun polyacrilonitrile nanofibres, Iran. Polym. J. 14 (2005) 1074-1081.

Google Scholar

[25] S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagstrテカm, P. Westbroek, K. De Clerck, The effect of temperature and humidity on electrospinning, J. Mater. Sci. 44 (2009) 1357-1362.

DOI: 10.1007/s10853-008-3010-6

Google Scholar

[26] V. Kalayci, M. Ouyang, K. Graham, Polymeric nanofibres in high efficiency filtration applications, Filtration 6 (2006) 286-293.

Google Scholar

[27] K.H. Lee, H.Y. Kim, H.J. Bang, Y.H. Jung, S.G. Lee, The change of bead morphology formed on electrospun polystyrene fibers, Polymer 44 (2003) 4029-4034.

DOI: 10.1016/s0032-3861(03)00345-8

Google Scholar