Pattern Transfer of 23-Nm-Diameter Block Copolymer Self-Assembled Nanodots Using CF4 Etching with Carbon Hard Mask (CHM) as Mask

Article Preview

Abstract:

The self-assembly of block copolymer (BCP) has demonstrated as promising alternative technology to overcome the limitation of conventional lithography owing to its ability in forming nanostructure with size 3-100 nm. In this study, we investigated a technique to transfer self-assembled nanodots of Poly(styrene-b-dimethyl siloxane) (PS-PDMS) BCP to Si. The pattern transfer of PS-PDMS nanodots with the pitch of 33 nm and the diameter of 23 nm using CF4 etching with Carbon Hard Mask (CHM) as Mask is demonstrated. Si nanopillar with height of 51 nm was fabricated. This result improves the potential use of PS-PDMS BCP self-assembly technique for fabrication nano-electronic devices, such as quantum dot solar cell and ultrahigh density of magnetic recording.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-136

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Park, D. H. Lee, J. Xu, B. Kim, S. W. Hong, U. Jeong, T. Xu, and T. P. Russel, Science 323 (2009) 1030.

Google Scholar

[2] M. Huda, J. Liu, Y. Yin, and S. Hosaka, Jpn. J. Appl. Phys. 51 (2012) 06FF1001.

Google Scholar

[3] Bita, K. W. Yang, Y. S. Jung, C. A. Ross, E. L. Thomas, and K. K. Berggren, Science 321 (2008) 939.

Google Scholar

[4] M. Huda, T. Tamura, Y. Yin, and S. Hosaka, Key Eng. Mater. AMDE 497 (2011) 122.

Google Scholar

[5] T. Akahane, M. Huda, T. Tamura, Y. Yin, and S. Hosaka, Key Eng. Mater. AMDE 497 (2011) 116.

Google Scholar

[6] T. Akahane, M. Huda, Y. Yin, and S. Hosaka, Key Eng. Mater. AMDE 459 (2010) 124.

Google Scholar

[7] M. Huda, Y. Yin, and S. Hosaka, Key Eng. Mater. AMDE 459 (2010) 120.

Google Scholar

[8] K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, and K. Naito, J. Photopolym. Sci. Technol. 15 (2002) 465.

Google Scholar

[9] H. Hieda, Y. Yanagita, A. Kikitsu, T. Maeda, and K. Naito, J. Photopolym. Sci. Technol. 19 (2006) 425.

Google Scholar

[10] J. Y. Cheng, C. A. Ross, V. H. Z. Chan, E. L. Thomas, G. H. Rob, R. G. H. Lammertink, G. J. Vancso, Adv. Mater. 13 (2001) 1174.

Google Scholar

[11] H. J. Park, M. G. Kang, L. J. Guo: ACS Nano 3 (2009) 2601.

Google Scholar

[12] K. Aissou, M. Kogelschatz, T. Baron, and P. Gentile, Surf. Sci. 601 (2007) 2611.

Google Scholar

[13] P. L. Fata, R. Puglisi, S. Lombardo, and C. Bongiorno, Superlattices Microstruct. 44 (2008) 693.

Google Scholar

[14] S. Park, J. Y. Wang, B. Kim, and T. P. Russell, Nano Letters 8 (2008) 1667.

Google Scholar