Influence of Surface Morphology of Textured Substrate against Poly-Si Thin Film Solar Cells Performance

Article Preview

Abstract:

Since poly-Si is an indirect band gap material and has low optical absorption coefficient in the visible-infrared region, the light trapping in thin film poly-Si layer by using textured substrate is one of the important technical issue for achievement of high short current. Surface texture of a transparent conductive oxide (TCO) layer on a glass substrate as well as SnO2 with a large grain are usually utilized for the light-trapping technique, i.e., path lengths of the incident light in the poly-Si layer are effectively enhanced by the light-scattering at the textured surface. In this paper, a systematic investigation has been carried out concerning the relationship between poly-Si thin film solar cells performance and surface morphology of substrate texture as a function of root mean square roughness of substrate surface, in order to find the optimum textured substrate and realize the light trapping in the poly-Si solar cells. Furthermore, the influence of textured substrate on optical reflectance, poly-Si microstructure and photovoltaic performance are also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-109

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Green, Energy Policy 28 (2000) 989.

Google Scholar

[2] M.A. Green: High Efficiency Silicon Solar Cells, Trans Tech Publications, Switzerland, 1987, p.69.

Google Scholar

[3] O. Kluth, O. Vetterl, R. Carius, F. Finger, S. Wieder, B. Rech and H. Wagner, Mater. Res. Soc. Symp. Proc. 557 (1999) 731.

DOI: 10.1557/proc-557-731

Google Scholar

[4] Y. Nasuno, M. Kondo and A. Matsuda, Jpn. J. Appl. Phys. 40 (2001) L303.

Google Scholar

[5] T. Matsui, M. Tsukiji, H. Saika, T. Toyama and H. Okamoto, J. Non-Cryst. Solids 1152 (2002) 299-302.

DOI: 10.1016/s0022-3093(01)01083-3

Google Scholar

[6] O. Vetterl, P. Hapke, O. Kluth, A. Lambertz, S. Wieder, B. Rech, F. Finger, H. Wagner, Solid Stat Phenomena 67-68 (1999) 101.

DOI: 10.4028/www.scientific.net/ssp.67-68.101

Google Scholar

[7] N. Wyrsch, C. Droz, L. Feitknecht, M. Goerlitzer, U. Kroll, J. Meier, P. Torres, E. Vallat-Sauvain, A. Shah, and M. Vanecek, Mater. Res. Soc. Symp. Proc. 609 (2000) A15. 1. 1.

DOI: 10.1557/proc-609-a15.1

Google Scholar

[8] T. Matsui, M. Tsukiji, H. Saika, T. Toyama and H. Okamoto, Jpn. J. Appl. Phys. 41 (2002) 20.

Google Scholar

[9] M. Goerlitzer. P. Torres, N. Beck, N. Wyrsch, and A. Shah, J. Non-Cryst. Solids 996 (1998) 227-230.

Google Scholar

[10] J. Kocka, A. Fejfar, V. Vorlicek, H. Stuchlikova, and J. Stuchlik, Mater. Res. Soc. Symp. Proc. 557 (1999) 483.

Google Scholar

[11] T. Matsui, R. Muhida, T. Kawamura, H. Saika, T. Toyama, H. Okamoto, T. Yamazaki, S. Honda, H. Takakura, and Y. Hamakawa, Appl. Phys. Lett. 81 (2002) 4751.

DOI: 10.1063/1.1527979

Google Scholar

[12] R. Muhida, T. Matsui, T. Kawamura, T. Toyama, H. Okamoto, S. Honda, H. Takakura, and Y. Hamakawa, Solid Stat Phenomena 93 (2003) 115.

DOI: 10.4028/www.scientific.net/ssp.93.115

Google Scholar

[13] H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Itoh, M. Yamanaka and Y. Hayashi, IEEE Electron Devices Lett. EDL-4 (1983) 157.

Google Scholar

[14] Y. Nasuno, M. Kondo, and A. Matsuda, Appl. Phys. Lett. 78 (2001) 2330.

Google Scholar

[15] H. Okamoto, H. Kida, S. Nomura, K. Fukumoto and Y. Hamakawa, J. Appl. Phys. 54 (1983) 3236.

Google Scholar

[16] R. Muhida, T. Kawamura, T. Harano, M. Okajima, T. Matsui, T. Toyama, H. Okamoto, S. Honda, H. Takakura, and Y. Hamakawa, Jpn. J. Appl. Phys. 42 (2003) 6753.

DOI: 10.1143/jjap.42.6753

Google Scholar