Microstructural and Thermal Properties of Nanocrystalline Silica Xerogel Powders Converted from Sago Waste Ash Material

Article Preview

Abstract:

In the present investigation, nanocrystalline silica xerogel (NSX) powders were produced from an amorphous silica xerogel (ASX) extracted from sago waste ash. The NSX powders have been calcined at 1200oC, milled and then annealed at temperatures ranging from a room temperature to 1200oC. Their properties (and most notably the size of the particles) have been characterized on the basis of the experimental data obtained using thermal analysis (DSC/TGA), X-ray diffraction (XRD), Infrared and Raman spectroscopy. For the crystalline silica xerogel powders the results show a narrow distribution of the particle sizes centered around an average value of 636  67 nm. The DSC analysis of NSX indicates that in the temperature range from a room temperature to 300oC five distinct stages of the crystallization process take place, which are delimited by the transition temperature of 38oC, 92oC, 129oC, 168oC, and 246oC, respectively. Above 300oC, the crystalline phase is similar to an amorphous silica xerogel (ASX), i.e. cristoballite-like and tridymite-like crystalline silica phases confirmed by the XRD analysis. It has been observed that the characteristic band of cristoballite is strongly dependent on the thermal history and the NSX transforms into a stable form at a temperature of 1200oC. Both the Raman and the FTIR spectra elucidate the bonding system of the constituent atoms and groups (such as Si, O and OH) and throw light on their underlying structure. The obtained results are important for optimization of the parameters of the technological processes for production of nanocrystalline silica glass ceramics used as a host matrix for luminescence materials, each of which requires a specific porosity and structure.

You might also be interested in these eBooks

Info:

[1] J. R. Haynes and W. C. Westphal, Radiation Resulting from Recombination of Holes and Electrons in Silicon, Phys. Rev. 101 (1956) 1676 – 1678.

DOI: 10.1103/physrev.101.1676

Google Scholar

[2] A.M. Azad, Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning, Material Science and Engineering A 435 – 436 (2006) 468 – 473.

DOI: 10.1016/j.msea.2006.07.075

Google Scholar

[3] A. Parvathy Rao, A. Venkateswara Rao, Microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures, J. Non-Cryst. Solids 354 (2008) 10–18.

DOI: 10.1016/j.jnoncrysol.2007.07.021

Google Scholar

[4] T. Coquil, E. K. Richman, N. J. Hutchinson, S. H. Tolbert, and L. Pilon, Thermal conductivity of cubic and hexagonal mesoporous silica thin films, J. Appl. Phys. 106 (2009) 034910 – 034921.

DOI: 10.1063/1.3182826

Google Scholar

[5] L. Kocon, F. Despetis, J. Phalippou, Ultralow density silica aerogels by alcohol supercritical Drying, J. Non-Cryst. Solids 225 (1998) 96 – 100.

DOI: 10.1016/s0022-3093(98)00322-6

Google Scholar

[6] V. Gibiat, O. Lefeuvre, T. Woignier, J. Pelous, J. Phalippou, Acoustic properties and potential applications of silica aerogels, J. Non-Cryst. Solids 186 (1995) 244–255.

DOI: 10.1016/0022-3093(95)00049-6

Google Scholar

[7] G.M. Pajonk, Transparent silica aerogels, J. Non-Cryst. Solids, 225 (1998) 307–314.

DOI: 10.1016/s0022-3093(98)00131-8

Google Scholar

[8] N.E. Pellegri, J. C. Dawnay, and E.M. Yeatman, Multilayer SiO2-B2O3-Na2O Films on Si for Optical Applications, J. Sol-Gel Sci. and Tech. 13 (1998) 783 – 787.

DOI: 10.1023/a:1008630030373

Google Scholar

[9] J. Valenta, I. Pelanta, K. Luterova, R. Tomasiunas, S. Cheylan, R. G. Elliman, J. Linnros, B. Ho¨nerlage, Active planar optical waveguide made from luminescent silicon nanocrystals, Appl. Phys. Lett. 6 (2003) 955 – 957.

DOI: 10.1063/1.1544433

Google Scholar

[10] B. Grobelna, Luminescence based on energy transfer in xerogels doped with Tb2 xEux(WO4)3, Optica Applicata 38 (2008) 39 – 47.

Google Scholar

[11] R.A. Venkateswara, P.B. Wagh, D. Haranath, P.P. Risbud, S.D. Kumbhare, Infuence of temperature on the physical properties of TEOS silica xerogels, Ceram. Inter. 25 (1999) 505 – 509.

DOI: 10.1016/s0272-8842(97)00085-0

Google Scholar

[12] H. Aripin, S. Mitsudo, I.N. Sudiana, S. Tani, K. Sako, Y. Fujii, T. Saito, T. Idehara, S. Sabchevski, Rapid Sintering of Silica Xerogel Ceramic derived from Sago Waste Ash Using Submillimeter Wave Heating of a 300 GHz CW Gyrotron, Journal of Infrared, Millimeter and Terahertz Wave 32 (2011) 867 – 876.

DOI: 10.1007/s10762-011-9797-2

Google Scholar

[13] U. Kalapathy, A. Proctor, J. Sultz, A simple method for production of pure silica from rice hull ash, Bioresour., Tech. 73 (2000) 257 – 260.

DOI: 10.1016/s0960-8524(99)00127-3

Google Scholar

[14] S. Affandi, H. Setyawan, S. Winardi, A. Purwanto, R. Balgis, A facile method for production of high purity silica xerogel from baggase ash, Advance Powder Technology 20 (2009) 468 – 472.

DOI: 10.1016/j.apt.2009.03.008

Google Scholar

[15] H. Aripin, S. Mitsudo, E.S. Prima, I.N. Sudiana, S. Tani, K. Sako, Y. Fujii, T. Saito, T. Idehara, S. Sano, B. Sunendar, S. Sabchevski, Structural and Microwave Properties of Silica Xerogel Glass-Ceramic Sintered by Sub-millimeter Wave Heating using a Gyrotron, Journal of Infrared, Millimeter and Terahertz Waves, 2012.

DOI: 10.1007/s10762-012-9925-7

Google Scholar

[16] T. Kuroki, Y. Uchida, H. Takizawa and K. Morita, Effect of 28 GHz/2.45 GHz microwave irradiation on the crystallization of blast furnace slag, ISIJ Int., 47 (2007) 592 – 595.

DOI: 10.2355/isijinternational.47.592

Google Scholar

[17] C. H. Polsky1 and J. F. McHone, Raman Spectroscopic Confirmation of Metastable Cristobalite in Melt Samples From the Wanapitei Impact Structure. Lunar And Planetary Science Xxix, 29th Annual Lunar and Planetary Science Conference, March 16-20, 1998, Houston, TX, abstract No. 1471.

Google Scholar

[18] T. Hirose, K. Kihara, M. Okuno, S. Fujinami, K. Shinoda, X-ray, DTA, and Raman studies of monoclinic tridymite and its higher temperature orthorhombic modification with varying temperature, J. Miner. Petrol. Sci. 100 (2005) 55 – 69.

DOI: 10.2465/jmps.100.55

Google Scholar

[19] D. Cellai, M. A. Carpenter, B. Wruck, E. K. H. Salje, Characterization of high-temperature phase transitions in single crystals of Steinbach tridymite, American Mineralogist 79 (1994) 606 – 614.

Google Scholar

[20] D. Cellai, M. A. Carpenter, R. J. Kirkpatrick, E.K.H. Salje, M. Zhang, Thermally Induced Phase Transitions in Tridymite: an Infrared Spectroscopy Study, Phys Chem Minerals 22 (1995) 50 – 60.

DOI: 10.1007/bf00202680

Google Scholar

[21] G.N. Barbosa, H.P. Oliveira, Synthesis and characterization of V2O5–SiO2 xerogel composites prepared by base catalysed sol–gel method, J. Non-Cryst. Solids 352 (2006) 3009 – 3014.

DOI: 10.1016/j.jnoncrysol.2006.04.009

Google Scholar

[22] J.P. Rainho, J. Rocha, L.D. Carlos, R. M. Almeida, 29Si nuclear-magnetic-resonance and vibrational spectroscopy studies of SiO2–TiO2 powders prepared by the sol-gel process, J. Mater. Res. 16 (2001) 2369 – 2376.

DOI: 10.1557/jmr.2001.0325

Google Scholar

[23] Y. Shinohara, N. Kohyama, Quantitative analysis of tridymate and cristobalite crystallized in rice husk ash by heating, Indust. Health 42 (2004) 277 – 285.

DOI: 10.2486/indhealth.42.277

Google Scholar

[24] T. Nakagawa, M. Soga, A new method for fabricating water repellent silica films having high heat-resistance using the sol-gel method, Journal of Non-Crystalline Solids 260 (1999) 167 – 174.

DOI: 10.1016/s0022-3093(99)00594-3

Google Scholar

[25] L.H Wang and B.J Tsai, The sintering and crystallization of colloidal silica gel, Mater. Lett. 43 (2000) 309 – 314.

Google Scholar

[26] P.B Wagh, S.V Ingale, Comparison of some psysico-chemical properties of hydrophilic and hydrophobic silica aerogels, Ceram. Inter. 28 (2002) 43 – 50.

DOI: 10.1016/s0272-8842(01)00056-6

Google Scholar

[27] M.M Haslinawati, K.A. Matori, Z.A Wahab, H.A.A Sidek, A.T Zainal, Effect of temperature on ceramic from rice husk ask, Intern. J. of Basic and Applied Sci. (IJBAS) 9 (2009) 111 – 117.

Google Scholar

[28] S.V Ingale, P.U Sastry, A.K Patra, R. Tewari, P.B Wagh, C. Gupta, Microstructural investigation on TNT and PETN incorporated silica xerogels, J. Sol-Gel Sci. Technol. 54 (2010) 238 – 242.

DOI: 10.1007/s10971-010-2188-7

Google Scholar