Modeling of I-, T- and V-Shaped Microcantilevers for Environmental Monitoring

Article Preview

Abstract:

This paper describes a model of microcantilever to determine the optimal dimensions that can be used for environmental monitoring. Three types, which are usually used i.e., I-, T- and V-shaped microcantilevers, are considered. The microcantilevers work in dynamic mode in which their resonance frequencies depend on both spring constant and effective mass. It can be seen that the spring constant and effective mass of the microcantilever change when the structure is changed even the size is same. In consequent, the sensor sensitivity is also found to be different each other. The V-shaped microcantilever is more sensitive than I- and T-shaped ones. Moreover, the simulation results show that the microcantilever with sizes of length 10 µm, width 5 µm and thickness 100 nm is good enough to detect molecule gas with the mass of less than femtogram.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-125

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.R. Frómeta, Cantilever biosensors, Biotecnología Aplicada 23 (2006) 320-323.

Google Scholar

[2] N.V. Larvik, M.J. Sepaniak, P.G. Datskos, Cantilever transducers as a platform for chemical and biological sensors, Rev. Sci. Instrum. 75 (2004) 2229–2250.

DOI: 10.1063/1.1763252

Google Scholar

[3] C. Wang, D. Wang, Y. Mao, X. Hu, Ultrasensitive biochemical sensors based on microcantilevers of atomic force microscope, Anal. Biochem. 363 (2007) 1-11.

DOI: 10.1016/j.ab.2006.12.010

Google Scholar

[4] O. Wolter, T. Bayer, J. Greschner, Micromachined silicon sensors for scanning force microscopy, J. Vac. Sci. Technol. B. 9 (1990) 1353-1357.

Google Scholar

[5] H.P. Lang, M. Hegner, C. Gerber, Nanomechanical cantilever array sensors, in: B. Bhushan (Eds. ), Springer Handbook of Nanotechnology, 2nd ed, Berlin, 2007, pp.443-460.

DOI: 10.1007/978-3-540-29857-1_16

Google Scholar

[6] S. Hosaka, T. Chiyoma, A. Ikeuchi, H. Okano, H. Sone, T. Izumi, Possibility of a femtogram mass biosensor using a self-sensing cantilever, Current Appl. Phys. 6 (2006) 384-388.

DOI: 10.1016/j.cap.2005.11.024

Google Scholar

[7] H. Sone, A. Ikeuchi, T. Izumi, H. Haruki, S. Hosaka, Femtogram mass biosensor using self-sensing santilever for allergy check, Japanese J. Appl. Phys. 45 (3B) (2006) 2301-2304.

DOI: 10.1143/jjap.45.2301

Google Scholar

[8] E. Finot, A. Passian, T. Thundat, Measurement of mechanical properties of cantilever shaped materials, Sensors 8 (2008) 3497-3541.

DOI: 10.3390/s8053497

Google Scholar

[9] S.K. Vashist, A review of microcantilevers for sensing applications, Ozojono Journal of Nanotechnology Online (2007) 1-15.

Google Scholar

[10] F. Lochon, I. Dufour, D. Rebi`ere, An alternative solution to improve sensitivity of resonant microcantilever chemical sensors: comparison between using high-order modes and reducing dimensions, Sensors and Actuators B 108 (2005) 979–998.

DOI: 10.1016/j.snb.2004.11.086

Google Scholar

[11] S. Dohn, R. Sandberg, W. Svendsen, A. Boisen, Enhanced functionality of cantilever based mass sensors using higher modes and functionalized particles, Digest Techn. Proceedings of the Transducers '05 Conference Korea, 2005, pp.636-639.

DOI: 10.1109/sensor.2005.1496497

Google Scholar

[12] D. Jin, X. Li, J. Liu, G. Zuo, Y. Wang, M. Liu, H. Yu, High-mode resonant piezoresistive cantilever sensors for tens-femtogram resoluble mass sensing in air, J. Micromech. Microeng. 16 (2006) 1017-1023.

DOI: 10.1088/0960-1317/16/5/019

Google Scholar

[13] M. Narducci, E. Figueras, I. Gràcia, L. Fonseca, J. Santander, C. Cané, Modeling of T-shaped microcantilever resonators, Dans Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS – DTIP, Italy, (2007).

Google Scholar

[14] J.E. Sader, Parallel beam approximation for V-shaped atomic force microscope cantilevers, Rev. Sci. In-strum. 66 (9) (1995) 4583-4587.

DOI: 10.1063/1.1145292

Google Scholar