Thermomechanical Fatigue Behavior of NiTi Wires

Article Preview

Abstract:

Applications of the functional, smart materials SMA need a careful evaluation of the working conditions and fatigue life. Structural fatigue failure in NiTi usually comes from a surface defect inducing crack growth, and this means that fatigue has to be studied for concrete applications, with the correct samples, as the state of the material presents size effects. Testing machine experiments on Ni-rich pseudoelastic wires indicate that the main parameter controlling the fatigue life in the traction-traction experiments is the effective stress on the NiTi wire. Long wire life (in the million cycle regime) can be achieved under limited stresses (under 170 MPa) in traction-traction tests. Also, experiments have been done on thermal actuation of NiTi wire under traction at constant load. Long actuator life (larger than 400000 cycles) can be achieved at low stresses (around 100 MPa), coherently with the results from the mechanical cycling.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

311-315

Citation:

Online since:

January 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Otsuka and C.M. Wayman, editors, Shape memory materials, Cambridge University Press, Cambridge, 1998.

Google Scholar

[2] A. Isalgue, V. Torra, F. Casciati, S. Casciati: Fatigue of NiTi for dampers and actuators. CIMTEC 2012, Montecatini Terme, Italy, June 2012.

DOI: 10.4028/www.scientific.net/ast.83.18

Google Scholar

[3] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner. Structural and functional fatigue of NiTi shape memory alloys. Materials Science and Engineering A 378 (2004) 24–33.

DOI: 10.1016/j.msea.2003.10.327

Google Scholar

[4] H. Tobushi, T. Hachisuka, S. Yamada, P-H Lin, Rotating-bending Fatigue of a NiTi Shape Memory Alloy Wire, Mechanics of Materials 26 (1997) 35-42.

DOI: 10.1016/s0167-6636(97)00019-7

Google Scholar

[5] M.G. de Azevedo, R. Fonseca, V. T. Lopes, The Influence of High Amplitude Cycling Straining on the Behaviour of Superelastic NiTi, Int. J. of Fatigue, 28 (2006) 1087-1091

DOI: 10.1016/j.ijfatigue.2005.11.008

Google Scholar

[6] Miyazaki, S; Mizukoshi, K; Ueki, T; Sakuma, T; Liu, YN: Fatigue life of Ti-50 at.% Ni and Ti-40Ni-10Cu (at.%) shape memory alloy wires. Materials Science and Engineering A 273 (1999) 658-663

DOI: 10.1016/s0921-5093(99)00344-5

Google Scholar

[7] S. W. Robertson, A. R. Pelton, R. O. Ritchie: Mechanical fatigue and fracture of Nitinol. International Materials Reviews, 57 (2012) 1- 36

DOI: 10.1179/1743280411Y.0000000009

Google Scholar

[8] D. W. Norwich, A. Fasching: A study of the effect of diameter on the fatigue properties of NiTi wire. Journal of Materials Engineering and Performance. 18 (2009) 558–562

DOI: 10.1007/s11665-009-9415-9

Google Scholar

[9] V. Torra, A. Isalgue, C. Auguet, F. Casciati, S. Casciati, P. Terriault: SMA Passive Elements for Damping in Stayed Cables: Experimental Results and Simulation. EACS #122, Genoa, Italy (2012)

DOI: 10.1007/978-3-7091-1571-8_9

Google Scholar

[10] G. Kang, Q. Kan, C. Yu, D. Song, Y. Liu: Whole-life transformation ratchetting and fatigue of super-elastic NiTi Alloy under uniaxial stress-controlled cyclic loading. Materials Science and Engineering A 535 (2012) 228– 234.

DOI: 10.1016/j.msea.2011.12.071

Google Scholar