Preparation and Thermoelectric Properties of Polyaniline Doped with Protonic Acids

Article Preview

Abstract:

Hydrochloric acid doped polyaniline and camphor sulfonic acid doped polyaniline were prepared by oxidative chemical polymerization and grinding, respectively. The structures of polyaniline samples were measured by Fourier transform infared spectroscopy. The Seebeck coefficient and electrical conductivity of the composites were investigated as protonic acid content in the temperature range from room temperature to 380K. The highest electrical conductivity of the 1M hydrochloric acid doped polyaniline reaches 5.57×102S/m at 320K, and the mass ratio of 1:1 camphor sulfonic acid doped polyaniline reaches 5.97×102S/m at 380K. This work suggests that a new method improves the thermoelectric properties of conducting polymers.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

100-104

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.Y. Wang, K.F. Cai, Yin JL, B.J. An, Y. Du, X. Yao, In situ fabrication and thermoelectric properties of PbTe-polyaniline composite nanostructures, J. Nanopart. Res. 13 (2011) 533-539.

DOI: 10.1007/s11051-010-0043-y

Google Scholar

[2] L. Yan, M. Shao, H. Wang, D. Dudis, A. Urbas, B. Hu, High Seebeck effects from hybrid metal/polymer/metal thin-film devices, Adv. Mater. 23 (2011) 4120-4124.

DOI: 10.1002/adma.201101634

Google Scholar

[3] X.B. Zhao, S.H. Hu, M.J. Zhao, T.J. Zhu, Thermoelectric properties of Bi0. 5Sb1. 5Te3/polyaniline hybrids prepared by mechanical blending, Mater. Lett. 52 (2002) 147-149.

DOI: 10.1016/s0167-577x(01)00381-0

Google Scholar

[4] H. Anho, M. Fukamoto, Y. Heta, K. Koga, H. Itahara, R. Asahi, et al., Preparation of conducting polyaniline-bismuth nanoparticle composites by planetary ball milling, J. Electron. Mater. 38 (2009) 1443-1449.

DOI: 10.1007/s11664-009-0786-3

Google Scholar

[5] Y. Hiroshige, M. Ookawa, N. Toshima, Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene, Synth. Met. 157 (2007) 467-474.

DOI: 10.1016/j.synthmet.2007.05.003

Google Scholar

[6] J.J. Li, X.F. Tang, H. Li, Y.Y. Yan, Q.J. Zhang, Synthesis and thermolelectric properties of hydrochloric acid-doped polyaniline, Synth. Met. 160 (2010) 1153-1158.

DOI: 10.1016/j.synthmet.2010.03.001

Google Scholar

[7] L. Wang, D.G. Wang, G.M. Zhu, J.Q. Li, F. Pan, Thermoelectric properties of conducting polyaniline/graphite composites, Mater. Lett. 65 (2011) 1086-1088.

DOI: 10.1016/j.matlet.2011.01.014

Google Scholar

[8] Q. Yao, L.D. Chen, W.Q. Zhang, S.C. Liufu, X.H. Chen, Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites, ACS. Nano. 4 (2010) 2445-2451.

DOI: 10.1021/nn1002562

Google Scholar

[9] N. Mateeva, H. Niculescu, J. Schlenoff, L.R. Testardi, Correlation of Seebeck coefficient and electric conductivity in polyaniline and polypyrrole, J. Appl. Phys. 83 (1998) 3111-3117.

DOI: 10.1063/1.367119

Google Scholar

[10] J.J. Li, X.F. Tang, Thermoelectric properties of polyaniline doped with different protonic acids, J. Mater. Sci. Eng. 28 (2010) 259, 263-266.

Google Scholar

[11] L.L. Ding, X.W. Wang, R.V. Gregory, Thermal properties of chemically synthesized polyaniling (EB) powder, Synth. Met. 104 (1999) 73-78.

DOI: 10.1016/s0379-6779(99)00035-1

Google Scholar