[1]
F.J. DiSalvo, Thermoelectric cooling and power generation, Science. 285 (1999) 703-706.
DOI: 10.1126/science.285.5428.703
Google Scholar
[2]
D. R. Clarke, P. Fratzl, Annual Reviews of Materials Research, Annual Reviews, Palo Alto, (2011).
Google Scholar
[3]
G. Wang, L. Endicott, C. Uher, Recent Advances in the Growth of Bi-Sb-Te-Se Thin Films, Sci. Adv. Mater. 3 (2011) 539-560.
DOI: 10.1166/sam.2011.1182
Google Scholar
[4]
K. Nielsch, J. Bachmann, J. Kimling, H. Bottner, Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites, Adv. Energ. Mater. 1 (2011) 713-731.
DOI: 10.1002/aenm.201100207
Google Scholar
[5]
M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, M.V. Vedernikov, Thermoelectric elements based on compounds of silicon and transition metals, Tech. Phys. Lett. 23 (1997) 602-603.
DOI: 10.1134/1.1261766
Google Scholar
[6]
D.M. Rowe, Thermoelectrics Handbook, CRC Press, New York, (2005).
Google Scholar
[7]
M. Umemoto, Z.G. Liu, R. Omatsuzawa, K. Tsuchiya, Production and characterization of Mn-Si thermoelectric materials, Mater. Sci. Forum. 342-346 (2000) 918-923.
DOI: 10.4028/www.scientific.net/msf.343-346.918
Google Scholar
[8]
V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, M.V. Vedernikov, Highly effective Mg2Si1–xSnx thermoelectrics, Phys. Rev. B. 74 (2006) 045207.
DOI: 10.1109/ict.2005.1519920
Google Scholar
[9]
V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, M.V. Vedernikov, Thermoelectrics of n-type with ZT > 1 based on Mg2Si-Mg2Sn solid solutions, Proceedings of the 24th International Conference on Thermoelectrics, Jun 19-23, Clemson, SC, 2005, p.189.
DOI: 10.1109/ict.2005.1519920
Google Scholar
[10]
Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, T.M. Tritt, High figures of merit and natural nanostructures in Mg2Si0. 4Sn0. 6 based thermoelectric materials, Appl. Phys. Lett. 93 (2008) 102109.
DOI: 10.1063/1.2981516
Google Scholar
[11]
D.M. Rowe, M. Gao, Evaluation of thermoelectric modules for power generation, J. Power Sources. 73 (1998) 193-198.
DOI: 10.1016/s0378-7753(97)02801-2
Google Scholar
[12]
I. Aoyama, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, T. Tsuji, Effects of Ge Doping on Micromorphology of MnSi in MnSi1. 7 and on Their Thermoelectric Transport Properties, Jpn. J. Appl. Phys. 44 (2005).
DOI: 10.1143/jjap.44.8562
Google Scholar
[13]
W. Seifert, E. Mueller, S. Walczak, Generalized analytic one-dimensional description of non-homogeneous TE coller and generator elements based on compatibility apprach, Proceedings of the 25th International Conference on Thermoelectrics, August 6-10, Vienna, Austria, 2006, p.714.
DOI: 10.1109/ict.2006.331241
Google Scholar
[14]
E. Mueller, G. Karpinski, L.M. Wu, S. Walczak, W. Seifert, Separated effect of 1D thermoelectric material gradients, Proceedings of the 25th International Conference on Thermoelectrics, August 6-10, Vienna, Austria, 2006, p.204.
DOI: 10.1109/ict.2006.331333
Google Scholar
[15]
G.J. Snyder, T.S. Ursell, Thermoelectric efficiency and compatibility, Phys. Rev. Lett. 91 (2003) 148301.
Google Scholar
[16]
A.J. Zhou, X.B. Zhao, T.J. Zhu, S.H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, E. Mueller, Improved Thermoelectric Performance of Higher Manganese Silicides with Ge Additions, J. Electron. Mater. 39 (2010) 2002-(2007).
DOI: 10.1007/s11664-009-1034-6
Google Scholar
[17]
D.M. Rowe, CRC Handbook of Thermoelectric, CRC Press, Boca Raton, (1995).
Google Scholar
[18]
L.I. Petrova, L.D. Dudkin, V.S. Khlomov, Diffusion interaction of CoSi and MnSi1. 75 with Nickel, Inorg. Mater. 31 (1995) 1112-1116.
Google Scholar
[19]
P L.I. Petrova, L.D. Dudkin, M.I. Fedorov, F.Y. Solomkin, V.K. Zaitsev, I.S. Eremin, Diffusion processes at the MnSi1. 75/Cr contact, Inorg. Mater. 40 (2004) 558-562.
DOI: 10.1023/b:inma.0000031985.20191.3a
Google Scholar
[20]
P L.I. Petrova, L.D. Dudkin, V.S. Khlomov, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, Chromium as an antidiffusion interlayer in higher manganese silicide-nickel contacts, Tech. Phys. 45 (2000) 641-643.
DOI: 10.1134/1.1259692
Google Scholar