Performance Evaluation of a Silicide-Based Thermoelectric Generator for Power Generation

Article Preview

Abstract:

A TEG composed of p-type higher manganese silicide and n-type magnesium silicide-stannide was evaluated by theoretical simulation based on finite element method and steady-state approximation. The geometry factors, heat flux, power output and the thermal electrical conversion efficiency of the TEG were calculated by applying the measured thermoelectric parameters of each leg into the simulation tool. Furthermore, the contact effect on the performance of the TEG was analyzed by separately introducing a contact layer between the thermoelectric legs and the metal layers having specific electrical and thermal conductivity. It was found that the different cross-sectional areas were required for the p-and n-type legs to achieve maximum module output or conversion efficiency. In ideal contact state, a promising efficiency of 8.29% can be obtained at a given temperature gradient. On the other hand, the performance of the TEG might be seriously deteriorated if the electrical or/and thermal resistance of the contact layer increased.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

144-152

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.J. DiSalvo, Thermoelectric cooling and power generation, Science. 285 (1999) 703-706.

DOI: 10.1126/science.285.5428.703

Google Scholar

[2] D. R. Clarke, P. Fratzl, Annual Reviews of Materials Research, Annual Reviews, Palo Alto, (2011).

Google Scholar

[3] G. Wang, L. Endicott, C. Uher, Recent Advances in the Growth of Bi-Sb-Te-Se Thin Films, Sci. Adv. Mater. 3 (2011) 539-560.

DOI: 10.1166/sam.2011.1182

Google Scholar

[4] K. Nielsch, J. Bachmann, J. Kimling, H. Bottner, Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites, Adv. Energ. Mater. 1 (2011) 713-731.

DOI: 10.1002/aenm.201100207

Google Scholar

[5] M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, M.V. Vedernikov, Thermoelectric elements based on compounds of silicon and transition metals, Tech. Phys. Lett. 23 (1997) 602-603.

DOI: 10.1134/1.1261766

Google Scholar

[6] D.M. Rowe, Thermoelectrics Handbook, CRC Press, New York, (2005).

Google Scholar

[7] M. Umemoto, Z.G. Liu, R. Omatsuzawa, K. Tsuchiya, Production and characterization of Mn-Si thermoelectric materials, Mater. Sci. Forum. 342-346 (2000) 918-923.

DOI: 10.4028/www.scientific.net/msf.343-346.918

Google Scholar

[8] V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, M.V. Vedernikov, Highly effective Mg2Si1–xSnx thermoelectrics, Phys. Rev. B. 74 (2006) 045207.

DOI: 10.1109/ict.2005.1519920

Google Scholar

[9] V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, M.V. Vedernikov, Thermoelectrics of n-type with ZT > 1 based on Mg2Si-Mg2Sn solid solutions, Proceedings of the 24th International Conference on Thermoelectrics, Jun 19-23, Clemson, SC, 2005, p.189.

DOI: 10.1109/ict.2005.1519920

Google Scholar

[10] Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, T.M. Tritt, High figures of merit and natural nanostructures in Mg2Si0. 4Sn0. 6 based thermoelectric materials, Appl. Phys. Lett. 93 (2008) 102109.

DOI: 10.1063/1.2981516

Google Scholar

[11] D.M. Rowe, M. Gao, Evaluation of thermoelectric modules for power generation, J. Power Sources. 73 (1998) 193-198.

DOI: 10.1016/s0378-7753(97)02801-2

Google Scholar

[12] I. Aoyama, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, T. Tsuji, Effects of Ge Doping on Micromorphology of MnSi in MnSi1. 7 and on Their Thermoelectric Transport Properties, Jpn. J. Appl. Phys. 44 (2005).

DOI: 10.1143/jjap.44.8562

Google Scholar

[13] W. Seifert, E. Mueller, S. Walczak, Generalized analytic one-dimensional description of non-homogeneous TE coller and generator elements based on compatibility apprach, Proceedings of the 25th International Conference on Thermoelectrics, August 6-10, Vienna, Austria, 2006, p.714.

DOI: 10.1109/ict.2006.331241

Google Scholar

[14] E. Mueller, G. Karpinski, L.M. Wu, S. Walczak, W. Seifert, Separated effect of 1D thermoelectric material gradients, Proceedings of the 25th International Conference on Thermoelectrics, August 6-10, Vienna, Austria, 2006, p.204.

DOI: 10.1109/ict.2006.331333

Google Scholar

[15] G.J. Snyder, T.S. Ursell, Thermoelectric efficiency and compatibility, Phys. Rev. Lett. 91 (2003) 148301.

Google Scholar

[16] A.J. Zhou, X.B. Zhao, T.J. Zhu, S.H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, E. Mueller, Improved Thermoelectric Performance of Higher Manganese Silicides with Ge Additions, J. Electron. Mater. 39 (2010) 2002-(2007).

DOI: 10.1007/s11664-009-1034-6

Google Scholar

[17] D.M. Rowe, CRC Handbook of Thermoelectric, CRC Press, Boca Raton, (1995).

Google Scholar

[18] L.I. Petrova, L.D. Dudkin, V.S. Khlomov, Diffusion interaction of CoSi and MnSi1. 75 with Nickel, Inorg. Mater. 31 (1995) 1112-1116.

Google Scholar

[19] P L.I. Petrova, L.D. Dudkin, M.I. Fedorov, F.Y. Solomkin, V.K. Zaitsev, I.S. Eremin, Diffusion processes at the MnSi1. 75/Cr contact, Inorg. Mater. 40 (2004) 558-562.

DOI: 10.1023/b:inma.0000031985.20191.3a

Google Scholar

[20] P L.I. Petrova, L.D. Dudkin, V.S. Khlomov, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, Chromium as an antidiffusion interlayer in higher manganese silicide-nickel contacts, Tech. Phys. 45 (2000) 641-643.

DOI: 10.1134/1.1259692

Google Scholar