[1]
S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[2]
H.S. Nalwa, Handbook of nanostructured Materials and Nanotechnology, vol. 5, Academic Press, New York, (2000).
Google Scholar
[3]
M.S. Dresselhaus, G. Dresslhous, P.C. Eklund, Science of Fullerenes and Carbon nanotubes, Academic Press, San Diego, (1996).
Google Scholar
[4]
M.S. Dresselhaus, G. Dresslhous, P. Avouris, Carbon nanotubes: Synthesis, structure properties and application, Springer, Berlin, (2001).
Google Scholar
[5]
J.K. Duan, S.X. Shao, Y. Li, L.F. Wang, et al., B.P. Liu. Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties, Iranian Polymer Journal. 21 (2012) 109-120.
DOI: 10.1007/s13726-011-0008-8
Google Scholar
[6]
T. Villmow, P. Potschke, S. Pegel , L. Haussler, B. Kretzschmar, Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix, Polymer. 49 (2008) 3500-3509.
DOI: 10.1016/j.polymer.2008.06.010
Google Scholar
[7]
D.L. Marcus., P.N. James, S.S. Eric, Simple Route to large-scale ordered arrays of liquid-deposited carbon nanotubes, Nano Letters. 4 (2004) 603-606.
DOI: 10.1021/nl035233d
Google Scholar
[8]
M.A. Abdeen, A.S. Ayesh, A.A.A. Jaafari, Physical characterizations of semi-conducting conjugated polymer-CNTs nanocomposites, Journal of Polymer Research. 19 (2012) DOI: 10. 1007/s10965-012-9839-z.
DOI: 10.1007/s10965-012-9839-z
Google Scholar
[9]
P.M. Ajayan, O. Stephanm, C. Colliex, D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science. 265 (1994) 1212-1214.
DOI: 10.1126/science.265.5176.1212
Google Scholar
[10]
T.S. Saotome, H.S. Kim, L.M. David, H.H. Thomas, Transparent conducting film: Effect of mechanical stretching to optical and electrical properties of carbon nanotube mat, Bulletin of Materials Science. 34 (2011) 615-622.
DOI: 10.1007/s12034-011-0007-6
Google Scholar
[11]
N. Mohammed, A.M. Díez-Pascual, M.A. Gómez-Fatou, New hybrid nanocomposites containing carbon nanotubes, inorganic fullerene-like WS2 nanoparticles and poly(ether ether ketone) (PEEK). 21 (2011) 7425-7433.
DOI: 10.1039/c1jm10441a
Google Scholar
[12]
T. Kimura, H. Ago, M. Tobita, Polymer composites of carbon nanotubes aligned by a magnetic field, Advanced Materials. 14 (2002) 1380-1383.
DOI: 10.1002/1521-4095(20021002)14:19<1380::aid-adma1380>3.0.co;2-v
Google Scholar
[13]
T. Takahashi, K. Yonetake, K. Koyama, T. Kikuchi, Polycarbonate crystallization by vapor-grown carbon fiber with and without magnetic field, Macromolecular Rapid Communications. 24 (2003) 763-767.
DOI: 10.1002/marc.200350021
Google Scholar
[14]
J.K. Duan, J. Zhang, P.K. Jiang, Effect of External Electric Field on Morphologies and Properties of the Cured Epoxy and Epoxy/Acrylate Systems, Journal of Applied Polymer Science. 125 (2012) 902-914.
DOI: 10.1002/app.33368
Google Scholar
[15]
Q.H. Zhang, Z.J. Chang, M.F. Zhu, et al., Dajun Chen. Electrospun carbon nanotube composite nanofibres with unizxially aligned arrays, Naonotechnology. 18 (2007) 115611.
DOI: 10.1088/0957-4484/18/11/115611
Google Scholar
[16]
X.Q. Chen, T. Saito, H. Yamada, K. Matsushige, Alignment single-wall carbon nanotubes with an alternating-current electric field, Applied Physics Letters. 78 (2001) 3714-3716.
DOI: 10.1063/1.1377627
Google Scholar
[17]
J.R. Wood, Q. Zhao, H.D. Wanger, Orientation of carbon nanotubes in polymers and its detection by Ranman spectroscopy, Composites Part A: Applied Science and Manufacturing. 32 (2001) 391-399.
DOI: 10.1016/s1359-835x(00)00105-6
Google Scholar
[18]
C.A. Martin, J.K.W. Sandler, A.H. Windle, et al., Electric field-induced aigned multi-wall carbon nanotube networks in epoxy composites, Polymer. 46 (2005) 877-886.
DOI: 10.1016/j.polymer.2004.11.081
Google Scholar
[19]
C. Pohl, H. Dielectrophoresis, Cambridge University Press: Cambridge, England, 1978, p.38.
Google Scholar
[20]
P. Herman, Schwan and D. Sher, Lawrence, Alternative-Current Field-Induced Forces and Their Biological Implications, Journal of the Electrochemical Society. 22c (1969) 116-125.
DOI: 10.1149/1.2411748
Google Scholar
[21]
G.H. Kim, Y.M. Shkel, Analysis of the electric orientation of inorganic micro/nano-particles in a liquid polymer considering electrophoresis flow, Journal of Micromechanics and Microengineering. 17 (2007) 2522-2527.
DOI: 10.1088/0960-1317/17/12/019
Google Scholar
[22]
M.K. Schwarz, W. Bauhofer, K. Schulte, Alternating electric field induced agglomeration of carbon black filled resins, Polymer. 43 (2002) 3079-3082.
DOI: 10.1016/s0032-3861(02)00084-8
Google Scholar
[24]
G.K.H. Pank, K.Z. Baba-Kishi, Patel, A. Topographic and phase-contrast imaging in atomic force microscopy. Ultra-microscopy. 81 (2000) 35-40.
DOI: 10.1016/s0304-3991(99)00164-3
Google Scholar
[25]
Y. Tsori, F. Tournilhac, D. Andelman, Leibler L. Structural changes in block copolymers: coupling of electric field and mobile ions, Physical Review Letters. 90 (2003) 145504.
DOI: 10.1103/physrevlett.90.145504
Google Scholar
[26]
J.K. Duan, C. Kim, P.K. Jiang, Effect of external electric field on microstructures and properties of carbon nanotubes/thermosets nanocomposites, Polymer Composites. 31 (2010) 347-358.
DOI: 10.1002/pc.20812
Google Scholar
[27]
L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media: Oxford, 1960, Chapter Ⅱ.
Google Scholar
[28]
Y. Tsori, F. Tournilhac, L. Leibler, Orienting ion-containing block copolymers using ac electric fields, Macromolecules. 36 (2003) 5873-5877.
DOI: 10.1021/ma034026x
Google Scholar
[29]
T.P. Skourlis, R. Mccullough, The effect of temperature on the behavior of the interphase in polymeric composites, Composites Science and Technology. 49 (1993) 363-368.
DOI: 10.1016/0266-3538(93)90068-r
Google Scholar