[1]
J.G. Snyder & E.S. Toberer, Complex thermoelctric materials, Nature Mater. 7 (2003) 105–114.
Google Scholar
[2]
L.D. Hicks, M.S. Dresslhaus, Thermoelectric figure of merit a one-dimensional conductor, J. Phys. Re. B 47 (1993)16631–16634.
DOI: 10.1103/physrevb.47.16631
Google Scholar
[3]
Y.M. Lin, M.S. Dresselhaus, Thermoelectric properties of superlattice nanowires, Phys. Rev B. 68 (2003)075304-1–075304-14.
Google Scholar
[4]
L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science. 321(2008)1457-1461.
DOI: 10.1126/science.1158899
Google Scholar
[5]
H.K. Lyeo, A.A. Khajetoorians, L. Shi, K.P. Pipe, R.J. Ram, A. Shakouri, C.K. Shih, Profiling the thermoelectric power of semiconductor junctions with nanometer resolution, J. Science. 303(2004) p.816.
DOI: 10.1126/science.1091600
Google Scholar
[6]
A . Majumdar, Thermoelectricity in semiconductor nanostructures, J. Science. 303(2004)777–778.
DOI: 10.1126/science.1093164
Google Scholar
[7]
C.M. Lieber, Z.L. Wang, Functional Nanowires, J. MRS Bull. 32(2007)99–108.
Google Scholar
[8]
G.Q. Zhang, W. Wang, X.G. Li, Enhanced thermoelectric properties of core/shell heterostructure nanowire composites, J. Adv. Mater. 20(2008)3654–3656.
DOI: 10.1002/adma.200800162
Google Scholar
[9]
W. Wang, X.L. Lu, T. Zhang, G.Q. Zhang, W.J. Jiang, X.G. Li, Bi2Te3/Te multiple heterostructure nanowire arrays formed by confined precipitation, J. AM. CHEM. SOC. 129(2007)6702–6703.
DOI: 10.1021/ja070976c
Google Scholar
[10]
L. D. Hicks, M. S. Dresslhaus, Effect of quantum-well structures on the thermoelectric figure of merit, J. Phys. Re. B. 15(1993)12727–12731.
DOI: 10.1103/physrevb.47.12727
Google Scholar
[11]
D. Fowler, A. Patane, A. Ignatov, L. Eaves, M. Henini, N. Mori, D.K. Maude, R. Airey, Novel regimes of electron dynamics in superlattices, Appl. Phys. Lett. 88 (2006)052111–052113.
DOI: 10.1063/1.2171800
Google Scholar
[12]
S.Y. Jang, H.S. Kim, J. Park, M. Jung, J. Kim, S.H. Lee, J.W. Roh, W. Lee, Transport properties of single-crystalline n-type semiconducting PbTe nanowires, Nanotechnology. 20(2009) 415204 (4pp).
DOI: 10.1088/0957-4484/20/41/415204
Google Scholar
[13]
K.G. Biswas, H.E. Matbouly, V. Rawat, J.L. Schroeder, T.D. Sands, Self-supporting nanowire arrays templated in sacrificial branched porous anodic alumina for thermoelectric devices, J. Appl. Phys. Lett. 95(2009)073108–073108-3.
DOI: 10.1063/1.3207756
Google Scholar
[14]
J. Ham, W. Shim, D.H. Kim, S. Lee, J. Roh, S.W. Sohn, K.H. Oh, P.W. Voorhees, W. Lee, Direct Growth of Compound Semiconductor Nanowires by On-Film Formation of Nanowires: Bismuth Telluride, Nano Lett. 9(2009)2867–2872.
DOI: 10.1021/nl9010518
Google Scholar
[15]
T. Markussen, A.P. Jauho, M. Brandbyge, Surface decorated silicon nanowires: a route to high-ZT thermoelectrics, J. Phys. Rev. Lett. 103 (2009) 055502(4pp).
DOI: 10.1103/physrevlett.103.055502
Google Scholar
[16]
M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, Low- dimensional thermoelectric materials, J. Phys. Solid State. 41(1999)679—682.
DOI: 10.1134/1.1130849
Google Scholar
[17]
Y.M. Lin, M.S. Dresselhaus, Thermoelectric properties of superlattice nanowires, J Phys. Re .B. 68(2003)075304–075314.
Google Scholar
[18]
C. Dames, G. Chen, Theoretical. phonon thermal conductivity of Si/Ge superlattice nanowires, J Applied Physics, 95(2004)682-693.
DOI: 10.1063/1.1631734
Google Scholar
[19]
H.T. Zhu, H. Zhang, J.K. Liang, G.K. Rao, J.B. Li, G.Y. Liu, Z.M. Du, H.M. Fan, J. Luo, Controlled synthesis of Tellurium nanostructures from nanotubes to nanorods and nanowires and their template applications, J. Phys. Chem. C, 115(2011).
DOI: 10.1021/jp200316y
Google Scholar
[20]
Z. Tang, Y. Wang, K. Sun, N.A. Kotov, Spontaneous transformation of stabilizer-depleted binary semiconductor nanoparticles into selenium and tellurium nanowires, Advanced Materials. 17(2005) 358-363.
DOI: 10.1002/adma.200400894
Google Scholar
[21]
X.Q. Tian, S.X. Du, H.J. Gao, Ab initio calculation of the growth of Te nanorods and Bi2Te3 nanoplatelets, Chin. Phys. B. 17(2008)286-289.
Google Scholar
[22]
Z.P. Liu, Z.K. Hu, Q. Xie, B.J. Yang, J. Wu, Y.T. Qian, Surfactant-assisted growth of uniform nanorods of crys- talline tellurium, J. Mater. Chem. 13(2003)159-162.
DOI: 10.1039/b208420a
Google Scholar
[23]
W. Lu, Y. Ding, Y. Chen, Z. Wang, J. Fang, Bismuth Telluride hexagonal nanoplatelets and their two-step epitaxial growth, Journal of the American Chemical Society. 127(2005)10112-10116.
DOI: 10.1021/ja052286j
Google Scholar
[24]
D. Kong, W. Dang, J.J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, Y. Cui, Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential, Nano Lett. 10(2010)2245-50.
DOI: 10.1021/nl101260j
Google Scholar
[25]
T. Wang, R. Mehta, C.P. Karthik, G. Ganesan, B. Singh, W. Jiang, N. Ravishankar, T. Borca-Tasciuc, G.J. Ramanath, Microsphere bouquets of bismuth telluride nanoplates: room-temperature synthesis and thermoelectric properties, J. Phys. Chem. C. 114(2010).
DOI: 10.1021/jp908727b
Google Scholar
[26]
X.A. Fan, J.Y. Yang, Z. Xie, K. Li, W. Zhu, X.K. Duan, C.J. Xiao, Q.Q. Zhang, Bi2Te3 hexagonal nanoplates and thermoelectric properties of n-type Bi2Te3 nanocomposites, J. Phys. D: Appl. Phys. 40(2007)5975–5979.
DOI: 10.1088/0022-3727/40/19/029
Google Scholar