Preparation and Microstructure Control of One-Dimension Core-Shell Heterostructure of Te/Bi, Te/Bi2Te3 by Microwave Assisted Chemical Synthesis

Article Preview

Abstract:

Microstructure engineering of thermoelectric materials can resolve the conflicts of electrical and thermal transports. Especially, one-dimensional structure can obviously improve the thermoelectric figure of merit because of its crystal anisotropy and strong quantum confinement effect. In this paper, the Te nanowires, one-dimensional core-shell heterostructure of Te/Bi and Te/Bi2Te3 were controlled synthesized by microwave assisted chemical synthesis. The effect of PVP concentration and reductant dropping rate on the microstructure of the Te nanowires were investigated. The experimental results showed that with increasing the amount of PVP, the Te nanowires got less crystallinity and its surface become more rough due to its steric hindrance effect. With decreasing reductant dropping rate, the longer and thiner Te nanowires were obtained. Epitaxial growth can describe the relation of core Te and shell Bi (or Bi2Te3). It has been found that Bi shell uniformly surrounded around Te nanowires core, but Bi2Te3 sheets were perpendicular to the c-axis of Te nanowires. The different core-shell heterostructure structure can be obtained by adjusting reaction conditions and controlling diffusion kinetics of Te and Bi.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

153-160

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.G. Snyder & E.S. Toberer, Complex thermoelctric materials, Nature Mater. 7 (2003) 105–114.

Google Scholar

[2] L.D. Hicks, M.S. Dresslhaus, Thermoelectric figure of merit a one-dimensional conductor, J. Phys. Re. B 47 (1993)16631–16634.

DOI: 10.1103/physrevb.47.16631

Google Scholar

[3] Y.M. Lin, M.S. Dresselhaus, Thermoelectric properties of superlattice nanowires, Phys. Rev B. 68 (2003)075304-1–075304-14.

Google Scholar

[4] L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science. 321(2008)1457-1461.

DOI: 10.1126/science.1158899

Google Scholar

[5] H.K. Lyeo, A.A. Khajetoorians, L. Shi, K.P. Pipe, R.J. Ram, A. Shakouri, C.K. Shih, Profiling the thermoelectric power of semiconductor junctions with nanometer resolution, J. Science. 303(2004) p.816.

DOI: 10.1126/science.1091600

Google Scholar

[6] A . Majumdar, Thermoelectricity in semiconductor nanostructures, J. Science. 303(2004)777–778.

DOI: 10.1126/science.1093164

Google Scholar

[7] C.M. Lieber, Z.L. Wang, Functional Nanowires, J. MRS Bull. 32(2007)99–108.

Google Scholar

[8] G.Q. Zhang, W. Wang, X.G. Li, Enhanced thermoelectric properties of core/shell heterostructure nanowire composites, J. Adv. Mater. 20(2008)3654–3656.

DOI: 10.1002/adma.200800162

Google Scholar

[9] W. Wang, X.L. Lu, T. Zhang, G.Q. Zhang, W.J. Jiang, X.G. Li, Bi2Te3/Te multiple heterostructure nanowire arrays formed by confined precipitation, J. AM. CHEM. SOC. 129(2007)6702–6703.

DOI: 10.1021/ja070976c

Google Scholar

[10] L. D. Hicks, M. S. Dresslhaus, Effect of quantum-well structures on the thermoelectric figure of merit, J. Phys. Re. B. 15(1993)12727–12731.

DOI: 10.1103/physrevb.47.12727

Google Scholar

[11] D. Fowler, A. Patane, A. Ignatov, L. Eaves, M. Henini, N. Mori, D.K. Maude, R. Airey, Novel regimes of electron dynamics in superlattices, Appl. Phys. Lett. 88 (2006)052111–052113.

DOI: 10.1063/1.2171800

Google Scholar

[12] S.Y. Jang, H.S. Kim, J. Park, M. Jung, J. Kim, S.H. Lee, J.W. Roh, W. Lee, Transport properties of single-crystalline n-type semiconducting PbTe nanowires, Nanotechnology. 20(2009) 415204 (4pp).

DOI: 10.1088/0957-4484/20/41/415204

Google Scholar

[13] K.G. Biswas, H.E. Matbouly, V. Rawat, J.L. Schroeder, T.D. Sands, Self-supporting nanowire arrays templated in sacrificial branched porous anodic alumina for thermoelectric devices, J. Appl. Phys. Lett. 95(2009)073108–073108-3.

DOI: 10.1063/1.3207756

Google Scholar

[14] J. Ham, W. Shim, D.H. Kim, S. Lee, J. Roh, S.W. Sohn, K.H. Oh, P.W. Voorhees, W. Lee, Direct Growth of Compound Semiconductor Nanowires by On-Film Formation of Nanowires: Bismuth Telluride, Nano Lett. 9(2009)2867–2872.

DOI: 10.1021/nl9010518

Google Scholar

[15] T. Markussen, A.P. Jauho, M. Brandbyge, Surface decorated silicon nanowires: a route to high-ZT thermoelectrics, J. Phys. Rev. Lett. 103 (2009) 055502(4pp).

DOI: 10.1103/physrevlett.103.055502

Google Scholar

[16] M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, Low- dimensional thermoelectric materials, J. Phys. Solid State. 41(1999)679—682.

DOI: 10.1134/1.1130849

Google Scholar

[17] Y.M. Lin, M.S. Dresselhaus, Thermoelectric properties of superlattice nanowires, J Phys. Re .B. 68(2003)075304–075314.

Google Scholar

[18] C. Dames, G. Chen, Theoretical. phonon thermal conductivity of Si/Ge superlattice nanowires, J Applied Physics, 95(2004)682-693.

DOI: 10.1063/1.1631734

Google Scholar

[19] H.T. Zhu, H. Zhang, J.K. Liang, G.K. Rao, J.B. Li, G.Y. Liu, Z.M. Du, H.M. Fan, J. Luo, Controlled synthesis of Tellurium nanostructures from nanotubes to nanorods and nanowires and their template applications, J. Phys. Chem. C, 115(2011).

DOI: 10.1021/jp200316y

Google Scholar

[20] Z. Tang, Y. Wang, K. Sun, N.A. Kotov, Spontaneous transformation of stabilizer-depleted binary semiconductor nanoparticles into selenium and tellurium nanowires, Advanced Materials. 17(2005) 358-363.

DOI: 10.1002/adma.200400894

Google Scholar

[21] X.Q. Tian, S.X. Du, H.J. Gao, Ab initio calculation of the growth of Te nanorods and Bi2Te3 nanoplatelets, Chin. Phys. B. 17(2008)286-289.

Google Scholar

[22] Z.P. Liu, Z.K. Hu, Q. Xie, B.J. Yang, J. Wu, Y.T. Qian, Surfactant-assisted growth of uniform nanorods of crys- talline tellurium, J. Mater. Chem. 13(2003)159-162.

DOI: 10.1039/b208420a

Google Scholar

[23] W. Lu, Y. Ding, Y. Chen, Z. Wang, J. Fang, Bismuth Telluride hexagonal nanoplatelets and their two-step epitaxial growth, Journal of the American Chemical Society. 127(2005)10112-10116.

DOI: 10.1021/ja052286j

Google Scholar

[24] D. Kong, W. Dang, J.J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, Y. Cui, Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential, Nano Lett. 10(2010)2245-50.

DOI: 10.1021/nl101260j

Google Scholar

[25] T. Wang, R. Mehta, C.P. Karthik, G. Ganesan, B. Singh, W. Jiang, N. Ravishankar, T. Borca-Tasciuc, G.J. Ramanath, Microsphere bouquets of bismuth telluride nanoplates: room-temperature synthesis and thermoelectric properties, J. Phys. Chem. C. 114(2010).

DOI: 10.1021/jp908727b

Google Scholar

[26] X.A. Fan, J.Y. Yang, Z. Xie, K. Li, W. Zhu, X.K. Duan, C.J. Xiao, Q.Q. Zhang, Bi2Te3 hexagonal nanoplates and thermoelectric properties of n-type Bi2Te3 nanocomposites, J. Phys. D: Appl. Phys. 40(2007)5975–5979.

DOI: 10.1088/0022-3727/40/19/029

Google Scholar