Surfactants Effect on the Photoactivity of Fe-Doped TiO2

Article Preview

Abstract:

Ti (OC4H9)4 was used as the Ti precursor and titanium dioxide (TiO2) was prepared by sol-gel method. During the preparation process, Fe3+ was doped and different surfactants, such as SDS, PEG, CTAB, were added to improve the photocatalytic activity of TiO2. The effect of the different type of surfactants on the structure of Fe-doped TiO2 was discussed. The photocatalysts were characterized by thermogravimetric thermal analysis, X-ray diffraction, scanning electron microscopy and UV-Vis spectrophotometer. The red shift of the absorption edge of the Fe-doped TiO2 prepared by using different surfactants was observed. Methyl orange (MO) solution was degraded under sunlight irradiation to evaluate the photocatalytic performance. The results indicated that the photocatalyst prepared with PEG addition had the highest activity and MO degradation ratio could reach 90% after 4 hours irradiation with the best photocatalyst.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

367-371

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Hernandez-Alonso, F. Fresno, S. Suarez, J.M. Coronado, Energy Environ. Sci. 2 (2009) 1231-1257.

Google Scholar

[2] X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Chem. Rev. 11(2010) 6503-6570.

Google Scholar

[3] E.J. Wolfrim, J. Huang, D.M. Blake, P. Maness, Z. Huang, J. Fiest, Environ. Sci. Technol. 36 (2002) 3412-3419.

Google Scholar

[4] J.C. Yu, W. Ho, J. Yu, H. Yip, P.K. Wong, J. Environ. Sci. Technol. 39 (2005) 1175-1179.

Google Scholar

[5] Y.M. Wu, J.L. Zhang, L. Xiao, F. Chen, Appl. Catal. B: Environ. 88 (2009) 525-532.

Google Scholar

[6] R. Dholam, N. Patel, M. Adsmi, A. Miotello, Inter. J. Hydro. Energy 34(2009) 5337-5346.

Google Scholar

[7] A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63(2008) 515-520.

Google Scholar

[8] W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98 (1994) 13669-13679.

Google Scholar

[9] K. Nagaveni, M.S. Hegde, G. Madras, J. Phys. Chem. B 108 (2004) 20204-20212.

Google Scholar

[10] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, M. Anpo, Catal. Today 84 (2003) 191-196.

Google Scholar

[11] J.F. Zhu, F. Chen, J.L. Zhang, H.J. Chen, M. Anpo, J. Photochem. Photobiol. A: Chem. 180 (2006) 196-204.

Google Scholar

[12] E. Piera, M.I. Tejedor, M.E. Zorn, M.A. Anderson, Appl. Catal. B: Environ. 46 (2003) 671-685.

Google Scholar

[13] C. Adan, A. Bahamonde, M. Fernandez-Garcia, A. Martinez-Arias, Appl. Catal. B: Environ. 72 (2007) 11-17.

Google Scholar

[14] Y.H. Zhang, S.G. Ebbinghaus, A. Weidenkaff, T. Kurz, K.V. Nidda, P.J. Klar, M. Guengerich, A. Reller, Chem. Mater. 15 (2003) 4028-4033.

DOI: 10.1021/cm034246p

Google Scholar

[15] C.J. Brinker, G.W. Scherer, Sol-gel Science: the physics and chemistry of sol-gel process, Academic Press, Tokyo, (1995).

Google Scholar

[16] T. Benkacem, N. Agoudjil, Am.J. Applied Sci. 5(2008) 1437-1441.

Google Scholar

[17] R. Linacero, J. Aguado-Serrano, M.L. Rojas-Cervantes, J. Mater Sci. 41(2006) 2457-2464.

Google Scholar