[1]
M. Koebel, G. Madia and M. Elsener, Selective catalytic reduction of NO and NO2 at low temperatures, Catal. Today. 73 (2002) 239-247.
DOI: 10.1016/s0920-5861(02)00006-8
Google Scholar
[2]
G. Qi, R.T. Yang, Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania, Appl. Catal. B-Environ. 44 (2003) 217-225.
DOI: 10.1016/s0926-3373(03)00100-0
Google Scholar
[3]
J. Wang, Y. Ji, U. Graham, et al., NOx reduction on fully formulated lean NOx trap catalysts subjected to simulated road aging: insights from steady-state experiments, Chinese J. Catal. 32 (2011) 736-745.
DOI: 10.1016/s1872-2067(10)60230-6
Google Scholar
[4]
L. D. Li, F. X. Zhang, N.J. Guan, et al., Metal-ZSM-5/cordierite monolithic catalysts for purifying lean-burn engine exhaust, Chinese J. Catal. 27 (2006) 41-44.
Google Scholar
[5]
B.I. Palella, M. Cadoni, A. Frache, et al., On the hydrothermal stability of CuAPSO-34 microporous catalysts for N2O decomposition: a comparison with CuZSM-5, J. Catal. 217 (2003) 100-106.
DOI: 10.1016/s0021-9517(03)00033-2
Google Scholar
[6]
T. Ishihara, M. kagawa, F. Hadama, et al., Copper ion exchanged Silicoalumino phosphate (SAPO-34) as a thermostable catalyst for selective reduction of NOx with hydrocarbons, Stud. Surf. Sci. Catal. 84 (1994) 1493-1500.
DOI: 10.1016/s0167-2991(08)63692-7
Google Scholar
[7]
D.W. Fickel, E. D Addio, J.A. Lauterbach, et al., The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites, Appl. Catal. B-Environ. 102 (2011) 441-448.
DOI: 10.1016/j.apcatb.2010.12.022
Google Scholar
[8]
T . Ishihara, M. Kagawa, F. Hadama, et al., Copper Ion-Exchanged SAPO-34 as a Thermostable Catalyst for Selective Reduction of NO with C3H6, J. Catal. 169 (1997) 93-102.
DOI: 10.1006/jcat.1997.1681
Google Scholar
[9]
Z.Q. Liu, L. Tang, L.P. Chang, et al., In situ Synthesis of Cu-SAPO-34/Cordierite for the Catalytic Removal of NOx from Diesel Vehicles by C3H8, Chinese J. Catal. 32 (2011) 546-554.
DOI: 10.1016/s1872-2067(10)60205-7
Google Scholar
[10]
T. Inui, M. Kang, Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion, Appl. Catal. A-Gen. 164 (1997) 211-223.
DOI: 10.1016/s0926-860x(97)00172-5
Google Scholar
[11]
S. Askari, R. Halladj, Ultrasonic pretreatment for hydrothermal synthesis of SAPO-34 nanocrystals, Ultrason. Sonochem. 19 (2012) 554-559.
DOI: 10.1016/j.ultsonch.2011.09.006
Google Scholar
[12]
L.M. Kong, X.Q. Liu, D.H. Liu. Effects of ultrasound on SAPO-34 molecular sieve synthesis, J. Nanjing U. Sci. Technol. 31 (2007) 528-532.
Google Scholar
[13]
L. Liu, H.L. Yu, B.Y. Deng, Applications of power ultrasonic in catalytic field, Guang Zhou Chem. Ind. 37 (2009) 31-32.
Google Scholar
[14]
Y. Zhang, Y.F. Zheng, F. Xin, Properties and applications of monolithic catalysts, Chem. react. eng. technol. 20 (2004) 357-362.
Google Scholar
[15]
A.Q. Wang, D.B. Liang, J.W. Tang, et al., In-Situ synthesis of SAPO-34 molecular Sieve on monolithic cordierite substrates, Chem. J. Chinese U. 21 (2000) 1801-1804.
Google Scholar
[16]
S.T. Wilson, B.M. Lok, C.A. Messina, et al., Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids, J. . Am. Chem. Soc. 104 (1982) 1146-1147.
DOI: 10.1021/ja00368a062
Google Scholar
[17]
G. Yan, C. Huo, H.Z. Liu. Application of ultrasonic technologies in catalytic chemistry, Ind. Catal. 15 (2007) 1-5.
Google Scholar