[1]
S F YANG, P Y ZAVALU, M S WHITTIN GHAN. Hydrothermal synthesis of lithium iron phosphate cathodes [J]. Electrochemistry Communication, 2001, 3: 505-508.
DOI: 10.1016/s1388-2481(01)00200-4
Google Scholar
[2]
M TAKAHASHI, S TOBISHIMA, T K AKEI, et al. Characterization of LiFePO4 as the cathode material for recharge lithium batteries[J]. J Power Source, 2001, 97/98: 508-511.
DOI: 10.1016/s0378-7753(01)00728-5
Google Scholar
[3]
P P PIER, Z DANIELA, P MAURO. Improved electrochemical performance of a LiFePO4-based composite cathode [J]. Electrochemica Acta, 2001, 46(23): 3517-3523.
DOI: 10.1016/s0013-4686(01)00631-4
Google Scholar
[4]
YANG S F, SONG Y N, PETER Y Z, et al. Reactivity, stability and electrochemical behavior of lithium iron phosphates [J]. Electrochemistry Communication, 2002, 4(3): 239-244.
DOI: 10.1016/s1388-2481(01)00298-3
Google Scholar
[5]
ARNOLD G, GARCHE J, HEMMER R, et al. Fineparticle lithium iron phosphate LiFePO4 synthesized by a new low-cast aqueous precipitation technique [J]. J. Power Sources, 2003, 119/121: 247-251.
DOI: 10.1016/s0378-7753(03)00241-6
Google Scholar
[6]
MASATAKA W. Recent developments in lithium iron batteries [J]. Material Science and Engineering, 2001, R33: 109-134.
Google Scholar
[7]
CHUNG S Y, BLOKING J T, CHING Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Mater, 2002, 2: 123-128.
DOI: 10.1038/nmat732
Google Scholar
[8]
YAMADA A, HOSOYA M, CHUNG S C, et al. Olivine-type cathodes achievements and problems [J]. J Power Sources, 2003, 119/121: 232-238.
DOI: 10.1016/s0378-7753(03)00239-8
Google Scholar
[9]
Dragana Jugovic, Dragan Uskokovic. A review of recent developments in the synthesis procedures of lithium iron phosphate powders [J], J. Power Sources, 2009, 190: 538-544.
DOI: 10.1016/j.jpowsour.2009.01.074
Google Scholar
[10]
A.K. Padhi, K.S. Nanjundaswamy, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144 (1997) 1188-1194.
DOI: 10.1149/1.1837571
Google Scholar
[11]
A.K. Padhi, K.S. Nanjundaswamy, Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates, J. Electrochem. Soc. 144 (1997) 1609–1613.
DOI: 10.1149/1.1837649
Google Scholar
[12]
S. Franger, F. Le Cras, C. Bourbon, H. Rouault, Comparison between different LiFePO4 systhesis routes and their influence on its physico-chemical properties, J. Power Sources. 119 (2003) 252–257.
DOI: 10.1016/s0378-7753(03)00242-8
Google Scholar
[13]
A. Yamada, S.C. Chung, K. Hinokuma, Optimized LiFePO4 for lithium battery cathodes, J. Electrochem. Soc. 148 (2001) A224–A229.
DOI: 10.1149/1.1348257
Google Scholar
[14]
D.Y. Wang, X.D. Wu, Zh.X. Wang, L.Q. Chen, Cracking causing cyclic instability of LiFePO4 cathode material, J. Power Sources. 140 (2005) 125–128.
DOI: 10.1016/j.jpowsour.2004.06.059
Google Scholar
[15]
M. Koltypin, D. Aurbach, L. Nazar, B. Ellis, More on the performance of LiFePO4 electrodes-The effedt of synthesis route, solution composition, aging, and temperature, J. Power Sources. 174 (2007) 1241–1250.
DOI: 10.1016/j.jpowsour.2007.06.045
Google Scholar
[16]
N.J. Yun, H.W. Ha, K.H. Jeong, H.Y. Park, K. Kim, Systhesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor, J. Power Sources. 160 (2006) 1361–1368.
DOI: 10.1016/j.jpowsour.2006.02.097
Google Scholar
[17]
M. Takahashi, Sh. Tobishima, K. Takei, Y. Sakurai, Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries, J. Power Sources. 97 (2001) 508–511.
DOI: 10.1016/s0378-7753(01)00728-5
Google Scholar
[18]
George Ting-Kuo Fey, Tung Lin Lu, Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route, J. Power Sources. 178 (2008) 807–814.
DOI: 10.1016/j.jpowsour.2007.09.039
Google Scholar