[1]
J. Heisler P.M. Glibert J.M. Burkholder D.M. Anderson,W. Cochlan, W.C. Dennison, et al., Eutrophication and harmful algal blooms: A scientific consensus, Harmful Algae. 8 (2008) 3-13.
DOI: 10.1016/j.hal.2008.08.006
Google Scholar
[2]
J. Liu Q.F. Ye,Y.L. Liu H.Y. Wang, Effects of nitrogen and phosphorus eutrophication and Laminaria japonica on growth of Phaeodactylum tricornutum, J. Nucl. Agr. Sci. 4 (2008) 499-502.
Google Scholar
[3]
T. Sugawara,S. Taguchi, K, Hamasaki,T. Toda,T. Kikuchi, Response of natural phytoplankton assemblages to solar ultraviolet radiation (UV-B) in the coastal water, Japan, Hydrobiologia, 493 (2003) 17-26.
DOI: 10.1023/a:1025497817677
Google Scholar
[4]
X.X. Sun J.K. Choi, Recovery and fate of three species of marine dinoflagellates after yellow clay flocculation, Hydrobiologia. 519 (2004) 153-165.
DOI: 10.1023/b:hydr.0000026502.05971.bf
Google Scholar
[5]
Y. Wang,B. Zhou X.X. Tang, Effects of macroalga Gracilaria lemaneiformis on growth of Heterosigma akashiwo (Raphidophyceae), J. Appl. Phycol. 21 (2009) 375-385.
DOI: 10.1007/s10811-008-9380-y
Google Scholar
[6]
Q. Jin S.L. Dong, Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense, J. Exp. Mar. Biol. Ecol. 293 (2003) 41-55.
DOI: 10.1016/s0022-0981(03)00214-4
Google Scholar
[7]
Y.Z. Tang C.J. Gobler. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy, Harmful Algae. 10 (2011) 480-488.
DOI: 10.1016/j.hal.2011.03.003
Google Scholar
[8]
J.T. Xu,K.S. Gao. Growth, pigments, UV-absorbing compounds and agar yield of the economic red seaweed Gracilaria lemaneiformis (Rhodophyta) grown at different depths in the coastal waters of the South China Sea, J. Appl. Phycol. 20 (2008) 681-686.
DOI: 10.1007/s10811-007-9247-7
Google Scholar
[9]
Y.Q. Zheng K.S. Gao. Impacts of solar UV radiation on the photosynthesis, growth, and UV-absorbing compounds in Gracilaria lemaneiformis (Rhodophyta) grown at different nitrate concentrations, J. Phycol. 45 (2009) 314-323.
DOI: 10.1111/j.1529-8817.2009.00654.x
Google Scholar
[10]
Z.H. Qi,B. Liu,Y. Li,Y.Z. Mao Z.J. Jiang J.H. Zhang J.G. Fang, Suitability of two seaweeds, Gracilaria lemaneiformis and Sargassum pallidum, as feed for the abalone Haliotis discus hannai Ino, Aquaculture. 300 (2010) 189-193.
DOI: 10.1016/j.aquaculture.2010.01.019
Google Scholar
[11]
Y. Wang Z.M. Yu,X.X. Song X.X. Tang S.D. Zhang, Effects of macroalgae Ulva pertusa (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta) on growth of four species of bloom-forming dinoflagellates, Aquat. Bot. 86 (2007) 139-147.
DOI: 10.1016/j.aquabot.2006.09.013
Google Scholar
[12]
C.R. Nan H.Z. Zhang S.Z. Lin G.Q. Zhao X.Y. Liu. Allelopathic effects of Ulva lactuca on selected species of harmful bloom-forming microalgae in laboratory cultures, Aquat. Bot. 89 (2008) 9-15.
DOI: 10.1016/j.aquabot.2008.01.005
Google Scholar
[13]
M.Y. Oh,S.B. Lee D.H. Jin Y.K. Hong, H.J. Jin, Isolation of algicidal compounds from the red algorallina pilulifera against red tide microalgae, J. Appl. Phycol. 22 (2010) 453-458.
DOI: 10.1007/s10811-009-9478-x
Google Scholar
[14]
Y. Zhou,H. Yang,H. Hu,Y. Liu Y.Z. Mao,H. Zhou, et al., Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China, Aquaculture. 252 (2006) 264-276.
DOI: 10.1016/j.aquaculture.2005.06.046
Google Scholar
[15]
R.R.L. Guillard, Culture of phytoplankton for feeding marine invertebrates In: Smith WL, Chanley MH, editors, Culture of marine animals, Plenum, New York, 1975, pp.26-60.
DOI: 10.1007/978-1-4615-8714-9_3
Google Scholar
[16]
R.J. Strasser,A. Srivastava, Govindjee, Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria, Photochem. Photobiol. 61 (1995) 32-42.
DOI: 10.1111/j.1751-1097.1995.tb09240.x
Google Scholar
[17]
K.J. Appenroth,J. Stöckel,A. Srivastava R.J. Strasser, Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probedby OJIP chlorophyll a fluorescence measurements, Environ. Pollut. 115 (2001) 49-64.
DOI: 10.1016/s0269-7491(01)00091-4
Google Scholar
[18]
Y.Z. Tang C.J. Gobler, The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy, Harmful Algae. 10 (2011) 480-488.
DOI: 10.1016/j.hal.2011.03.003
Google Scholar
[19]
M.A. Alamsjah,S. Hirao,F. Ishibashi, Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae, Chlorophyta) on phytoplankton, J. Appl. Phycol. 20 (2008) 713-720.
DOI: 10.1007/s10811-007-9257-5
Google Scholar
[20]
S. Wium-Andersen,U. Anthoni,C. Christophersen,G. Houen, Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales), Oikos. 39 (1982) 187-190.
DOI: 10.2307/3544484
Google Scholar
[21]
H.M. Lu,H.H. Xie,Y. Gong,Q. Wang Y.F. Yang, Secondary metabolites from the seaweed Gracilaria lemaneiformis and their allelopathic effects on Skeletonema costatum, Biochem. Syst. Ecol. 4 (2011) 397-400.
DOI: 10.1016/j.bse.2011.05.015
Google Scholar
[22]
M.J. Reigosa,A. Sánchez-Moreiras,L. González, Ecophysiological approach in allelopathy, Crit. Rev. Plant Sci. 18 (1999) 577-608.
DOI: 10.1080/07352689991309405
Google Scholar
[23]
R.T. Van Aller, The Chemistry of Allelopathy, American Chemical Society, Washington, DC, 198, pp.337-386.
Google Scholar
[24]
J.Y. Zhu B.Y. Liu,J. Wang Y.N. Gao Z.B. Wu, Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion, Aquat. Toxicol. 2 (2010) 196-203.
DOI: 10.1016/j.aquatox.2010.02.011
Google Scholar