Photosynthetic Inhibition on the Microalga Phaeodactylum tricornutum by the Dried Macroalga Gracilaria tenuistipitata

Article Preview

Abstract:

The effects of the dried macroalga, Gracilaria tenuistipitata (Rhodophyta), on photosynthesis of a highly stress-resistant microalga, Phaeodactylum tricornutum were studied. P. tricornutum was cultured with dried G. tenuistipitata under controlled laboratory conditions for three days. All oxygenic photosynthetic organisms tested so far exhibit a polyphasic rise of fluorescence transients during the first second of illumination. These phases are labeled as O, J, I, P. The chlorophyll a (Chl a) fluorescence transient O-J-I-P curve coupled with its specific parameters in P. tricornutum was established. The Chl a fluorescence transients were recorded in vivo at high time resolution and analyzed according to the JIP-test which can quantify photosystem II activity. A clear dose-and time-dependent relationships were observed between the dried biomass of G. tenuistipitata and its inhibitory effect on Pyramimonas sp. A decrease in the O-J-I-P curve expressed as Chl a fluorescence intensity along with its specific parameters were observed, which was also time-dependent. The main photosynthetic inhibitory targets of the macroalga on the microalga, according to the JIP-test, can be expressed as a decrease in the number of active reaction centers and the blocking of the electron transport chain. The results of the present study suggest that dried fragments of G. tenuistipitata effectively inhibit photosynthesis in P. tricornutum and could thus be potential candidates for use in the control and mitigation of harmful algal blooms.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

725-731

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Heisler P.M. Glibert J.M. Burkholder D.M. Anderson,W. Cochlan, W.C. Dennison, et al., Eutrophication and harmful algal blooms: A scientific consensus, Harmful Algae. 8 (2008) 3-13.

DOI: 10.1016/j.hal.2008.08.006

Google Scholar

[2] J. Liu Q.F. Ye,Y.L. Liu H.Y. Wang, Effects of nitrogen and phosphorus eutrophication and Laminaria japonica on growth of Phaeodactylum tricornutum, J. Nucl. Agr. Sci. 4 (2008) 499-502.

Google Scholar

[3] T. Sugawara,S. Taguchi, K, Hamasaki,T. Toda,T. Kikuchi, Response of natural phytoplankton assemblages to solar ultraviolet radiation (UV-B) in the coastal water, Japan, Hydrobiologia, 493 (2003) 17-26.

DOI: 10.1023/a:1025497817677

Google Scholar

[4] X.X. Sun J.K. Choi, Recovery and fate of three species of marine dinoflagellates after yellow clay flocculation, Hydrobiologia. 519 (2004) 153-165.

DOI: 10.1023/b:hydr.0000026502.05971.bf

Google Scholar

[5] Y. Wang,B. Zhou X.X. Tang, Effects of macroalga Gracilaria lemaneiformis on growth of Heterosigma akashiwo (Raphidophyceae), J. Appl. Phycol. 21 (2009) 375-385.

DOI: 10.1007/s10811-008-9380-y

Google Scholar

[6] Q. Jin S.L. Dong, Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense, J. Exp. Mar. Biol. Ecol. 293 (2003) 41-55.

DOI: 10.1016/s0022-0981(03)00214-4

Google Scholar

[7] Y.Z. Tang C.J. Gobler. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy, Harmful Algae. 10 (2011) 480-488.

DOI: 10.1016/j.hal.2011.03.003

Google Scholar

[8] J.T. Xu,K.S. Gao. Growth, pigments, UV-absorbing compounds and agar yield of the economic red seaweed Gracilaria lemaneiformis (Rhodophyta) grown at different depths in the coastal waters of the South China Sea, J. Appl. Phycol. 20 (2008) 681-686.

DOI: 10.1007/s10811-007-9247-7

Google Scholar

[9] Y.Q. Zheng K.S. Gao. Impacts of solar UV radiation on the photosynthesis, growth, and UV-absorbing compounds in Gracilaria lemaneiformis (Rhodophyta) grown at different nitrate concentrations, J. Phycol. 45 (2009) 314-323.

DOI: 10.1111/j.1529-8817.2009.00654.x

Google Scholar

[10] Z.H. Qi,B. Liu,Y. Li,Y.Z. Mao Z.J. Jiang J.H. Zhang J.G. Fang, Suitability of two seaweeds, Gracilaria lemaneiformis and Sargassum pallidum, as feed for the abalone Haliotis discus hannai Ino, Aquaculture. 300 (2010) 189-193.

DOI: 10.1016/j.aquaculture.2010.01.019

Google Scholar

[11] Y. Wang Z.M. Yu,X.X. Song X.X. Tang S.D. Zhang, Effects of macroalgae Ulva pertusa (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta) on growth of four species of bloom-forming dinoflagellates, Aquat. Bot. 86 (2007) 139-147.

DOI: 10.1016/j.aquabot.2006.09.013

Google Scholar

[12] C.R. Nan H.Z. Zhang S.Z. Lin G.Q. Zhao X.Y. Liu. Allelopathic effects of Ulva lactuca on selected species of harmful bloom-forming microalgae in laboratory cultures, Aquat. Bot. 89 (2008) 9-15.

DOI: 10.1016/j.aquabot.2008.01.005

Google Scholar

[13] M.Y. Oh,S.B. Lee D.H. Jin Y.K. Hong, H.J. Jin, Isolation of algicidal compounds from the red algorallina pilulifera against red tide microalgae, J. Appl. Phycol. 22 (2010) 453-458.

DOI: 10.1007/s10811-009-9478-x

Google Scholar

[14] Y. Zhou,H. Yang,H. Hu,Y. Liu Y.Z. Mao,H. Zhou, et al., Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China, Aquaculture. 252 (2006) 264-276.

DOI: 10.1016/j.aquaculture.2005.06.046

Google Scholar

[15] R.R.L. Guillard, Culture of phytoplankton for feeding marine invertebrates In: Smith WL, Chanley MH, editors, Culture of marine animals, Plenum, New York, 1975, pp.26-60.

DOI: 10.1007/978-1-4615-8714-9_3

Google Scholar

[16] R.J. Strasser,A. Srivastava, Govindjee, Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria, Photochem. Photobiol. 61 (1995) 32-42.

DOI: 10.1111/j.1751-1097.1995.tb09240.x

Google Scholar

[17] K.J. Appenroth,J. Stöckel,A. Srivastava R.J. Strasser, Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probedby OJIP chlorophyll a fluorescence measurements, Environ. Pollut. 115 (2001) 49-64.

DOI: 10.1016/s0269-7491(01)00091-4

Google Scholar

[18] Y.Z. Tang C.J. Gobler, The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy, Harmful Algae. 10 (2011) 480-488.

DOI: 10.1016/j.hal.2011.03.003

Google Scholar

[19] M.A. Alamsjah,S. Hirao,F. Ishibashi, Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae, Chlorophyta) on phytoplankton, J. Appl. Phycol. 20 (2008) 713-720.

DOI: 10.1007/s10811-007-9257-5

Google Scholar

[20] S. Wium-Andersen,U. Anthoni,C. Christophersen,G. Houen, Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales), Oikos. 39 (1982) 187-190.

DOI: 10.2307/3544484

Google Scholar

[21] H.M. Lu,H.H. Xie,Y. Gong,Q. Wang Y.F. Yang, Secondary metabolites from the seaweed Gracilaria lemaneiformis and their allelopathic effects on Skeletonema costatum, Biochem. Syst. Ecol. 4 (2011) 397-400.

DOI: 10.1016/j.bse.2011.05.015

Google Scholar

[22] M.J. Reigosa,A. Sánchez-Moreiras,L. González, Ecophysiological approach in allelopathy, Crit. Rev. Plant Sci. 18 (1999) 577-608.

DOI: 10.1080/07352689991309405

Google Scholar

[23] R.T. Van Aller, The Chemistry of Allelopathy, American Chemical Society, Washington, DC, 198, pp.337-386.

Google Scholar

[24] J.Y. Zhu B.Y. Liu,J. Wang Y.N. Gao Z.B. Wu, Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion, Aquat. Toxicol. 2 (2010) 196-203.

DOI: 10.1016/j.aquatox.2010.02.011

Google Scholar