[1]
J. Huang, S. Virji, H.W. Bruce, et al., Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors, J. Am. Chem. Soc. 125 (2003) 314-315.
DOI: 10.1021/ja028371y
Google Scholar
[2]
S.K. Dhawan, N. Singh, S. Venkatachalam, Shielding behavior of conducting polymer-coated fabrics in X-band, W-band and radio frequency range, Synth. Met. 129 (2002) 261-267.
DOI: 10.1016/s0379-6779(02)00079-6
Google Scholar
[3]
W. Ming, Z. Feng, H.G. Zhi, et al., Polyaniline coated carbon particles and heir electrode behavior in organic carbonate electrolyte, J. Electroanal. Chem. 570 (2004) 201-208.
Google Scholar
[4]
F.C. Wang, R. Yang, J. Gong, et al., Synthesis and Characterization of Polyaniline Microfibers by Utilizing H4SiW12O40/Polyacrylamide Microfibers seeding Template Method, Eur. Polymer. 42 (2006) 2108-2113.
DOI: 10.1016/j.eurpolymj.2006.04.004
Google Scholar
[5]
F.C. Wang, X. Xu, J. Gong, et al., Polyaniline Microrods Synthesized by a Polyoxometalates/ Poly(Vinyl Alcohol) Microfibers Template, Mater. Lett. 59 (2005) 3982-3985.
DOI: 10.1016/j.matlet.2005.07.045
Google Scholar
[6]
F.C. Wang, Y. Lu, M. Xu, et al., Polyaniline Microrods and Microspheres Doped with Heteropoly Acid: Synthesis,Characterization and Gas Sensitivity, Chin. J. Inorg. Chem. 25 (2009) 465-468.
Google Scholar
[7]
R.H. Ma, Synthesis, characterization and properties of polyaniline doped with iron substituted silicotungstate isomers, J. Coord. Chem. 61 (2008) 1056-1065.
DOI: 10.1080/00958970701484772
Google Scholar
[8]
A. Tézé,G. Hervé, Formation et isomerisation des undeca et dodeca tungstosilicates et germanates isomeres, J. Inorg. Nucl. Chem. 39 (1977) 999-1002.
DOI: 10.1016/0022-1902(77)80251-0
Google Scholar
[9]
R.H. Ma, F.P. Wang, Synthesis and properties of polyaniline doped with cobalt substituted silicotungstate isomers with Keggin structure, Chin. J. Inorg. Chem. 23 (2007) 445-450.
Google Scholar
[10]
J. Gong, Z. Min, L.Y. Qu, et al., H4PMo11VO40(M=W, Mo) Doped Polyaniline Synthesis Characterization and Conversion of Isopropanol, Synth. Met. 101 (1999) 750-751.
Google Scholar
[11]
W. Luiny, M. Hasikb, Synthesis and Characterication of Polyaniline Doped with Heteropolyacids, Solid State Communication. 99 (1996) 685-689.
Google Scholar
[12]
J. Gong, J.Z. Yu, Y.G. Chen, Gas–solid Phase Method to Synthesize Polyaniline Doped with Heteropoly Acid, Materials Letters. 57 (2002) 765-770.
DOI: 10.1016/s0167-577x(02)00869-8
Google Scholar
[13]
E.B. Wang, C.W. Hu, L. Xu, Introduction to Polyoxometallate Chemistry, first ed, Chemistry Industry Press, Beijing, (1998).
Google Scholar
[14]
J.M. Wilbur, T.C. Sandreczki, I.M. Brown, et al., A representative of a New Class of Conducting Oligomer Acetylene-Terminated Polyaniline, Synth. Met. 82 (1996) 175-181.
DOI: 10.1016/s0379-6779(96)03785-x
Google Scholar
[15]
W. S. Huang, A. G. MacDiarmid, Optical Properties of Polyaniline, Polymer. 34 (1993) 1833-1845.
DOI: 10.1016/0032-3861(93)90424-9
Google Scholar
[16]
J. Gong, X.J. Cui, Z.W. Xie, et al., The Solid-state Synthesis of Aniline H4SiW12O4 Materials, Synth. Met. 129 (2002) 187-92.
Google Scholar
[17]
S.G. Wang, H. He, X.J. Cui, et al., New preparation method and properties of polyaniline function materials doped with H3+nPMo12-nVnO40(n=0, 1), Acta Chim Sinca. 59 (2001) 1163-1164.
Google Scholar
[18]
M. Hasik, W. Turek, E. Stochmal, et al., Conjugated Polymer-Supported Catalysts - Polyaniline Protonated with 12-Tungstophosphoric Acid, J. Catal. 147 (1994) 544-551.
DOI: 10.1006/jcat.1994.1171
Google Scholar