Uptake of Heavy Metals by Trees: Prospects for Phytoremediation

Article Preview

Abstract:

It is known that heavy metals are taken up and translocated by plants to different degrees. Phytoremediation, the use of plants to decontaminate soil by taking up heavy metals, shows considerable promise as a low-cost technique and has received much attention in recent years. However, its application is still very limited due to low biomass of hyperaccumulators, unavailability of the suitable plant species and long growing seasons required. Therefore, to maximize phytoextraction efficiency, it is important to select a fast-growing and high-biomass plant with high uptake of heavy metals, which is also compatible with mechanized cultivation techniques and local weather conditions. Trees in particular have a number of attributes (e.g. high biomass, economic value), which make them attractive plants for such a use. This paper reviews the potential for the phytoremediation of heavy metal-contaminated land by trees. In summary, we present the research progress of phytoremediation by trees and suggest ways in which this concept can be applied and improved.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

768-781

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Rascio and F. Navari-Izzo, Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 180 (2011) 169-181.

DOI: 10.1016/j.plantsci.2010.08.016

Google Scholar

[2] J. Yoon, X.D. Cao, Q.X. Zhou, et al., Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site, Sci. Total Environ. 368 (2006) 456-464.

DOI: 10.1016/j.scitotenv.2006.01.016

Google Scholar

[3] Q. Zhou and Y. Song, Remediation of Contaminated Soils: Principles and Methods, Science Press, Beijing, (2004).

Google Scholar

[4] D.C. Adriano, Trace Elements in Terrestrial Environments, Biogeochemistry, Bioavailability and Risks of Metals. 2nd ed., Springer-Verlag, Berlin, (2001).

Google Scholar

[5] L. Liu, H. Chen, P. Cai, et al., Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost, J. Hazard. Mater. 163 (2009) 563-567.

DOI: 10.1016/j.jhazmat.2008.07.004

Google Scholar

[6] H.C. Pedersen, F. Fossøy, J.A. Kålås, et al., Accumulation of heavy metals in circumpolar willow ptarmigan (Lagopus l. lagopus) populations, Sci. Total Environ. 371 (2006) 176-189.

DOI: 10.1016/j.scitotenv.2006.09.005

Google Scholar

[7] W. Liu, Q. Zhou, Z. Zhang, et al., Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars, J. Agric. Food. Chem. 59 (2011) 8324-8330.

DOI: 10.1021/jf201454w

Google Scholar

[8] S.P. McGrath, E. Lombi, C.W. Gray, et al., Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri, Environ. Pollut. 141 (2006) 115-125.

DOI: 10.1016/j.envpol.2005.08.022

Google Scholar

[9] P.B.A.N. Kumar, V. Dushenkov, H. Motto, et al., Phytoextraction: The use of plants to remove heavy metals from soils, Environ. Sci. Technol. 29 (1995) 1232-1238.

DOI: 10.1021/es00005a014

Google Scholar

[10] R.R. Brooks, R.S. Morrison, R.D. Reeves, et al., Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae), Proc. R. Soc. Lond. B. 203 (1979) 387-403.

DOI: 10.1098/rspb.1979.0005

Google Scholar

[11] R.L. Chaney, M. Malik, Y.M. Li, et al., Phytoremediation of soil metals, Curr. Opin. Biotechnol. 8 (1997) 279-284.

Google Scholar

[12] Y. Sun, Q. Zhou, L. Wang, et al., Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator, J. Hazard. Mater. 161 (2009) 808-814.

DOI: 10.1016/j.jhazmat.2008.04.030

Google Scholar

[13] P. Padmavathiamma and L. Li, Phytostabilisation—a sustainable remediation technique for zinc in soils, Water, Air, Soil Pollut. Focus. 9 (2009) 253-260.

DOI: 10.1007/s11267-009-9214-1

Google Scholar

[14] E.A.H. Pilon-Smits and J.L. Freeman, Environmental cleanup using plants: biotechnological advances and ecological considerations, Front. Ecol. Environ. 4 (2006) 203-210.

DOI: 10.1890/1540-9295(2006)004[0203:ecupba]2.0.co;2

Google Scholar

[15] J. Hernández-Allica, J.M. Becerril and C. Garbisu, Assessment of the phytoextraction potential of high biomass crop plants, Environ. Pollut. 152 (2008) 32-40.

DOI: 10.1016/j.envpol.2007.06.002

Google Scholar

[16] M. Murakami, N. Ae and S. Ishikawa, Phytoextraction of cadmium by rice (Oryza sativa L. ), soybean (Glycine max (L. ) Merr. ), and maize (Zea mays L. ), Environ. Pollut. 145 (2007) 96-103.

DOI: 10.1016/j.envpol.2006.03.038

Google Scholar

[17] E. Meers, S. Lamsal, P. Vervaeke, et al., Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site, Environ. Pollut. 137 (2005) 354-364.

DOI: 10.1016/j.envpol.2004.12.019

Google Scholar

[18] W. Rosselli, C. Keller and K. Boschi, Phytoextraction capacity of trees growing on a metal contaminated soil, Plant Soil. 256 (2003) 265-272.

DOI: 10.1023/a:1026100707797

Google Scholar

[19] C.J. French, N.M. Dickinson and P.D. Putwain, Woody biomass phytoremediation of contaminated brownfield land, Environ. Pollut. 141 (2006) 387-395.

DOI: 10.1016/j.envpol.2005.08.065

Google Scholar

[20] R. Fernández, A. Bertrand, A. Casares, et al., Cadmium accumulation and its effect on the in vitro growth of woody fleabane and mycorrhized white birch, Environ. Pollut. 152 (2008) 522-529.

DOI: 10.1016/j.envpol.2007.07.011

Google Scholar

[21] I.D. Pulford and C. Watson, Phytoremediation of heavy metal-contaminated land by trees—a review, Environ. Int. 29 (2003) 529-540.

DOI: 10.1016/s0160-4120(02)00152-6

Google Scholar

[22] M. Mleczek, P. Rutkowski, I. Rissmann, et al., Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis, Biomass Bioenergy. 34 (2010) 1410-1418.

DOI: 10.1016/j.biombioe.2010.04.012

Google Scholar

[23] I.D. Pulford, C. Watson and S.D. McGregor, Uptake of chromium by trees: Prospects for phytoremediation, Environ. Geochem. Health, (2001) 307-311.

Google Scholar

[24] W. Liu, Q. Zhou, J. An, et al., Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars, J. Hazard. Mater. 173 (2010) 737-743.

DOI: 10.1016/j.jhazmat.2009.08.147

Google Scholar

[25] M. Mleczek, Z. Magdziak, I. Rissmann, et al., Effect of different soil conditions on selected heavy metal accumulation by Salix viminalis tissues, J. Environ. Sci. Heal. A. 44 (2009) 1609-1616.

DOI: 10.1080/10934520903263645

Google Scholar

[26] M.J. Boyter, J.E. Brummer and W.C. Leininger, Growth and metal accumulation of geyer and mountain willow grown in topsoil versus amended mine tailings, Water, Air, Soil Pollut. 198 (2009) 17-29.

DOI: 10.1007/s11270-008-9822-9

Google Scholar

[27] I. Brunner, J. Luster, M.S. Gunthardt-Goerg, et al., Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil, Environ. Pollut. 152 (2008) 559-568.

DOI: 10.1016/j.envpol.2007.07.006

Google Scholar

[28] R. Unterbrunner, M. Puschenreiter, P. Sommer, et al., Heavy metal accumulation in trees growing on contaminated sites in Central Europe, Environ. Pollut. 148 (2007) 107-114.

DOI: 10.1016/j.envpol.2006.10.035

Google Scholar

[29] M. Mleczek, M. Lukaszewski, Z. Kaczmarek, et al., Efficiency of selected heavy metals accumulation by Salix viminalis roots, Environ. Exp. Bot. 65 (2009) 48-53.

DOI: 10.1016/j.envexpbot.2008.03.003

Google Scholar

[30] A. Lombini, M. Llugany, C. Poschenrieder, et al., Influence of the Ca/Mg ratio on Cu resistance in three Silene armeria ecotypes adapted to calcareous soil or to different, Ni- or Cu-enriched, serpentine sites, J. Plant Physiol. 160 (2003).

DOI: 10.1078/0176-1617-01002

Google Scholar

[31] E. Dinelli and A. Lombini, Metal distributions in plants growing on copper mine spoils in Northern Apennines, Italy: the evaluation of seasonal variations, Appl. Geochem. 11 (1996) 375-385.

DOI: 10.1016/0883-2927(95)00071-2

Google Scholar

[32] J. Mertens, P. Vervaeke, E. Meers, et al., Seasonal changes of metals in willow (Salix sp. ) stands for phytoremediation on dredged sediment, Environ. Sci. Technol. 40 (2006) 1962-(1968).

DOI: 10.1021/es051225i

Google Scholar

[33] K. Hasselgren, Utilization of sewage sludge in short-rotation energy forestry: a pilot study, Waste Manage. Res. 17 (1999) 251-262.

DOI: 10.1034/j.1399-3070.1999.00050.x

Google Scholar

[34] C. Takenaka, M. Kobayashi and S. Kanaya, Accumulation of cadmium and zinc in Evodiopanax innovans, Environ. Geochem. Health. 31 (2009) 609-615.

DOI: 10.1007/s10653-008-9205-6

Google Scholar

[35] A. Migeon, P. Richaud, F. Guinet, et al., Metal accumulation by woody species on contaminated sites in the north of France, Water, Air, Soil Pollut. 204 (2009) 89-101.

DOI: 10.1007/s11270-009-0029-5

Google Scholar

[36] I. Laureysens, R. Blust, L. De Temmerman, et al., Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations, Environ. Pollut. 131 (2004) 485-494.

DOI: 10.1016/j.envpol.2004.02.009

Google Scholar

[37] I. Langer, J. Santner, D. Krpata, et al., Ectomycorrhizal impact on Zn accumulation of Populus tremula L. grown in metalliferous soil with increasing levels of Zn concentration, Plant Soil. 355 (2012) 283-297.

DOI: 10.1007/s11104-011-1098-y

Google Scholar

[38] J. Sell, A. Kayser, R. Schulin, et al., Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil, Plant Soil. 277 (2005) 245-253.

DOI: 10.1007/s11104-005-7084-5

Google Scholar

[39] C. Baum, K. Hrynkiewicz, P. Leinweber, et al., Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix x dasyclados), J. Plant Nutr. Soil Sci. 169 (2006) 516-522.

DOI: 10.1002/jpln.200521925

Google Scholar

[40] E. Stoltz and M. Greger, Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings, Environ. Exp. Bot. 47 (2002) 271-280.

DOI: 10.1016/s0098-8472(02)00002-3

Google Scholar

[41] G.R. MacFarlane, C.E. Koller and S.P. Blomberg, Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies, Chemosphere. 69 (2007) 1454-1464.

DOI: 10.1016/j.chemosphere.2007.04.059

Google Scholar

[42] T. Ling, R. Jun and Y. Fangke, Effect of cadmium supply levels to cadmium accumulation by Salix, Int. J. Environ. Sci. Technol. 8 (2011) 493-500.

DOI: 10.1007/bf03326235

Google Scholar

[43] Z. Fischerová, P. Tlustoš, S. Jiřina, et al., A comparison of phytoremediation capability of selected plant species for given trace elements, Environ. Pollut. 144 (2006) 93-100.

DOI: 10.1016/j.envpol.2006.01.005

Google Scholar

[44] S. Clemens, M.G. Palmgren and U. Krämer, A long way ahead: understanding and engineering plant metal accumulation, Trends Plant Sci. 7 (2002) 309-315.

DOI: 10.1016/s1360-1385(02)02295-1

Google Scholar

[45] W.H.O. Ernst, Bioavailability of heavy metals and decontamination of soils by plants, Appl. Geochem. 11 (1996) 163-167.

DOI: 10.1016/0883-2927(95)00040-2

Google Scholar

[46] M. -L. Sander and T. Ericsson, Vertical distributions of plant nutrients and heavy metals in Salix viminalis stems and their implications for sampling, Biomass Bioenergy, 14 (1998) 57-66.

DOI: 10.1016/s0961-9534(97)10004-6

Google Scholar

[47] P. Das, S. Samantaray and G.R. Rout, Studies on cadmium toxicity in plants: A review, Environ. Pollut. 98 (1997) 29-36.

DOI: 10.1016/s0269-7491(97)00110-3

Google Scholar

[48] V. Hassinen, V.M. Vallinkoski, S. Issakainen, et al., Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula x tremuloides) grown in contaminated soil, Environ. Pollut. 157 (2009) 922-930.

DOI: 10.1016/j.envpol.2008.10.023

Google Scholar

[49] S.H. Han, D.H. Kim and J.C. Lee, Cadmium and zinc interaction and phytoremediation potential of seven salix caprea clones, J. Ecol. Field Biol. 33 (2010) 245-251.

DOI: 10.5141/jefb.2010.33.3.245

Google Scholar

[50] M.C. White and R.L. Chaney, Zinc, cadmium and manganese uptake by soybean from two zinc- and cadmium-amended coastal plain soils, Soil Sci. Soc. Am. J. 44 (1980) 308-313.

DOI: 10.2136/sssaj1980.03615995004400020022x

Google Scholar

[51] J.E. Eriksson, A field study on factors influencing Cd levels in soils and in grain of oats and winter wheat, Water, Air, Soil Pollut. 53 (1990) 69-81.

DOI: 10.1007/bf00154992

Google Scholar

[52] T.C. Durand, P. Baillif, P. Albéric, et al., Cadmium and zinc are differentially distributed in Populus tremula x P. alba exposed to metal excess, Plant Biosystems 145 (2011) 397-405.

DOI: 10.1080/11263504.2011.567787

Google Scholar

[53] P. Kopponen, M. Utriainen, K. Lukkari, et al., Clonal differences in copper and zinc tolerance of birch in metal-supplemented soils, Environ. Pollut. 112 (2001) 89-97.

DOI: 10.1016/s0269-7491(00)00096-8

Google Scholar

[54] B. Guo, Y. Liang, Q. Fu, N. et al., Cadmium stabilization with nursery stocks through transplantation: A new approach to phytoremediation, J. Hazard. Mater. 199-200 (2012) 233-239.

DOI: 10.1016/j.jhazmat.2011.11.001

Google Scholar

[55] E. Harada, A. Hokura, I. Nakai, et al., Assessment of willow (Salix sp. ) as a woody heavy metal accumulator: field survey and in vivo X-ray analyses, Metallomics. 3 (2011) 1340-1346.

DOI: 10.1039/c1mt00102g

Google Scholar

[56] P. Vollenweider, T. Menard and M.S. Gunthardt-Goerg, Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level, Environ. Pollut. 159 (2011) 324-336.

DOI: 10.1016/j.envpol.2010.07.013

Google Scholar

[57] P. Vollenweider, P. Bernasconi, H.P. Gautschi, et al., Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles, Environ. Pollut. 159 (2011) 337-347.

DOI: 10.1016/j.envpol.2010.03.016

Google Scholar

[58] A. Kohler, D. Blaudez, M. Chalot, et al., Cloning and expression of multiple metallothioneins from hybrid poplar, New Phytol. 164 (2004) 83-93.

DOI: 10.1111/j.1469-8137.2004.01168.x

Google Scholar

[59] K. Stobrawa and G. Lorenc-Plucińska, Changes in antioxidant enzyme activity in the fine roots of black poplar ( Populus nigra) and cottonwood (Populus deltoides Bartr. ex Marsch) in a heavy-metal-polluted environment, Plant Soil. 298 (2007).

DOI: 10.1007/s11104-007-9336-z

Google Scholar

[60] J. Du, J.L. Yang and C.H. Li, Advances in metallotionein studies in forest trees, Plant OMICS. 5 (2012) 46-51.

Google Scholar

[61] J. Lee, S. Donghwan, S. Won-yong, et al., Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells, Plant Mol. Biol. 54 (2004) 805-815.

DOI: 10.1007/s11103-004-0190-6

Google Scholar

[62] A. Zhigang, L. Cuijie, Z. Yuangang, et al., Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings, J. Exp. Bot. 57 (2006).

DOI: 10.1093/jxb/erl102

Google Scholar

[63] W.J. Guo, W. Bundithya and P.B. Goldsbrough, Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper, New Phytol. 159 (2003) 369-381.

DOI: 10.1046/j.1469-8137.2003.00813.x

Google Scholar

[64] A. Murphy and L. Taiz, Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes, Plant Physiol. 109 (1995) 945-954.

DOI: 10.1104/pp.109.3.945

Google Scholar

[65] G.Y. Huang and Y.S. Wang, Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress, Chemosphere. 77 (2009) 1026-1029.

DOI: 10.1016/j.chemosphere.2009.07.073

Google Scholar

[66] G.Y. Huang and Y.S. Wang, Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress, Aquat. Toxicol. 99 (2010) 86-92.

DOI: 10.1016/j.aquatox.2010.04.004

Google Scholar

[67] A. Turchi, I. Tamantini, A.M. Camussi, et al., Expression of a metallothionein A1 gene of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper, Plant Sci. 183 (2012) 50-56.

DOI: 10.1016/j.plantsci.2011.11.008

Google Scholar

[68] P. Jeyakumar, P. Loganathan, S. Sivakumaran, et al., Bioavailability of copper and zinc to poplar and microorganisms in a biosolids-amended soil, Soil Research. 48 (2010) 459-469.

DOI: 10.1071/sr09169

Google Scholar

[69] V.R. Prabhavathi and M.V. Rajam, Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance, Plant Biotechnol. 24 (2007) 273-282.

DOI: 10.5511/plantbiotechnology.24.273

Google Scholar

[70] X.P. Wen, X.M. Pang, N. Matsuda, et al., Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers, Transgenic Res. 17 (2008) 251-263.

DOI: 10.1007/s11248-007-9098-7

Google Scholar

[71] C. Franchin, T. Fossati, E. Pasquini, et al., High concentrations of zinc and copper induce differential polyamine responses in micropropagated white poplar (Populus alba), Physiol. Plant. 130 (2007) 77-90.

DOI: 10.1111/j.1399-3054.2007.00886.x

Google Scholar

[72] G. Lingua, C. Franchin, V. Todeschini, et al., Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones, Environ. Pollut. 153 (2008) 137-147.

DOI: 10.1016/j.envpol.2007.07.012

Google Scholar

[73] C. Xiang, B.L. Werner, E.M. Christensen, et al., The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels, Plant Physiol. 126 (2001) 564-74.

DOI: 10.1104/pp.126.2.564

Google Scholar

[74] A.C.M. Arisi, B. Mocquot, A. Lagriffoul, et al., Responses to cadmium in leaves of transformed poplars overexpressing γ-glutamylcysteine synthetase, Physiol. Plant. 109 (2000) 143-149.

DOI: 10.1034/j.1399-3054.2000.100206.x

Google Scholar

[75] A. Schützendübel, P. Nikolova, C. Rudolf, et al., Cadmium and H2O2-induced oxidative stress in Populus × canescens roots, Plant Physiol. Biochem. 40 (2002) 577-584.

DOI: 10.1016/s0981-9428(02)01411-0

Google Scholar

[76] Z.B. Doganlar, O. Doganlar, S. Erdogan, et al., Heavy metal pollution and physiological changes in the leaves of some shrub, palm and tree species in urban areas of Adana, Turkey, Chem. Speciation Bioavailability. 24 (2012) 65-78.

DOI: 10.3184/095422912x13338055043100

Google Scholar

[77] G. Berndes, F. Fredrikson and P. Borjesson, Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden, Agriculture Ecosystems & Environment. 103 (2004) 207-223.

DOI: 10.1016/j.agee.2003.09.013

Google Scholar

[78] N. Witters, S. Van Slycken, A. Ruttens, et al., Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: a sustainability assessment, Bioenergy Research. 2 (2009) 144-152.

DOI: 10.1007/s12155-009-9042-1

Google Scholar

[79] F. Guerra, S. Duplessis, A. Kohler, et al., Gene expression analysis of Populus deltoides roots subjected to copper stress, Environ. Exp. Bot. 67 (2009) 335-344.

DOI: 10.1016/j.envexpbot.2009.08.004

Google Scholar

[80] F. Wu, W. Yang, J. Zhang, et al., Cadmium accumulation and growth responses of a poplar (Populus deltoids × Populus nigra) in cadmium contaminated purple soil and alluvial soil, J. Hazard. Mater. 177 (2010) 268-273.

DOI: 10.1016/j.jhazmat.2009.12.028

Google Scholar

[81] L. Van Nevel, J. Mertens, K. Oorts, et al., Phytoextraction of metals from soils: How far from practice? Environ. Pollut. 150 (2007) 34-40.

DOI: 10.1016/j.envpol.2007.05.024

Google Scholar

[82] S. Castiglione, V. Todeschini, C. Franchin, et al., Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: A large-scale field trial on heavily polluted soil, Environ. Pollut. 157 (2009).

DOI: 10.1016/j.envpol.2009.02.011

Google Scholar

[83] J.T. Li, B. Liao, C.Y. Lan, et al., Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction, Journal of Environmental Quality. 39 (2010) 1262-1268.

DOI: 10.2134/jeq2009.0195

Google Scholar

[84] Z.Y. Dai, W.S. Shu, B. Liao, et al., Intraspecific variation in cadmium tolerance and accumulation of a high-biomass tropical tree Averrhoa carambola L.: implication for phytoextraction, J. Environ. Monit. 13 (2011) 1723-1729.

DOI: 10.1039/c1em10054h

Google Scholar

[85] N.M. Dickinson and I.D. Pulford, Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail, Environ. Int. 31 (2005) 609-613.

DOI: 10.1016/j.envint.2004.10.013

Google Scholar

[86] B.H. Robinson, T.M. Mills, D. Petit, et al., Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation, Plant Soil. 227 (2000) 301-306.

Google Scholar

[87] K.C. Fan, H.C. Hsi, C.W. Chen, et al., Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications, J. Environ. Manage. 92 (2011) 2818-2822.

DOI: 10.1016/j.jenvman.2011.06.032

Google Scholar

[88] G. Wieshammer, R. Unterbrunner, T.B. Garcia, et al., Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri, Plant Soil. 298 (2007) 255-264.

DOI: 10.1007/s11104-007-9363-9

Google Scholar

[89] D.J. King, A.I. Doronila, C. Feenstra, et al., Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: Growth, arsenic uptake and availability after five years, Sci. Total Environ. 406 (2008) 35-42.

DOI: 10.1016/j.scitotenv.2008.07.054

Google Scholar

[90] Y.X. Chen, Q. Lin, Y.M. Luo, et al., The role of citric acid on the phytoremediation of heavy metal contaminated soil, Chemosphere. 50 (2003) 807-811.

DOI: 10.1016/s0045-6535(02)00223-0

Google Scholar

[91] M.P. Elless and M.J. Blaylock, Amendment optimization to enhance lead extractability from contaminated soils for phytoremediation, Int. J. Phytorem. 2 (2000) 75-89.

DOI: 10.1080/15226510008500031

Google Scholar

[92] C. Turgut, M.K. Pepe and T.J. Cutright, The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus, Environ. Pollut. 131 (2004) 147-154.

DOI: 10.1016/j.envpol.2004.01.017

Google Scholar

[93] H.Y. Lai and Z.S. Chen, Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass, Chemosphere. 55 (2004) 421-430.

DOI: 10.1016/j.chemosphere.2003.11.009

Google Scholar

[94] M. Komárek, P. Tlustoš, J. Száková, et al., The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils, Environ. Pollut. 151 (2008) 27-38.

DOI: 10.1016/j.envpol.2007.03.010

Google Scholar

[95] M. Komárek, P. Tlustos, J. Száková, et al., The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils, Chemosphere. 67 (2007) 640-651.

DOI: 10.1016/j.chemosphere.2006.11.010

Google Scholar

[96] L.J. Zheng, X.M. Liu, U. Lutz-Meindl, et al., Effects of lead and EDTA-assisted lead on biomass, lead uptake and mineral nutrients in Lespedeza chinensis and Lespedeza davidii, Water, Air, Soil Pollut. 220 (2011) 57-68.

DOI: 10.1007/s11270-010-0734-0

Google Scholar

[97] X.Z. Yu and J.D. Gu, The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees, Ecotoxicology. 17 (2008) 143-152.

DOI: 10.1007/s10646-007-0177-6

Google Scholar

[98] S. Doumett, D. Fibbi, E. Azzarello, et al., Influence of the application renewal of glutamate and tartrate on Cd, Cu, Pb and Zn distribution between contaminated soil and Paulownia Tomentosa in a pilot-scale assisted phytoremediation study, Int. J. Phytorem. 13 (2011).

DOI: 10.1080/15226510903567455

Google Scholar

[99] H. Chen and T. Cutright, EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus, Chemosphere. 45 (2001) 21-28.

DOI: 10.1016/s0045-6535(01)00031-5

Google Scholar

[100] E. Lombi, F.J. Zhao, S.J. Dunham, et al., Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction, J. Environ. Qual. 30 (2001) 1919-(1926).

DOI: 10.2134/jeq2001.1919

Google Scholar

[101] S. Cherian and M.M. Oliveira, Transgenic plants in phytoremediation: recent advances and new possibilities, Environ. Sci. Technol. 39 (2005) 9377-9390.

DOI: 10.1021/es051134l

Google Scholar

[102] S. Eapen and S.F. D'Souza, Prospects of genetic engineering of plants for phytoremediation of toxic metals, Biotechnol. Adv. 23 (2005) 97-114.

DOI: 10.1016/j.biotechadv.2004.10.001

Google Scholar

[103] R.B. Meagher and A.C.P. Heaton, Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic, J. Ind. Microbiol. Biotechnol. 32 (2005) 502-513.

DOI: 10.1007/s10295-005-0255-9

Google Scholar

[104] S.L. Doty, Enhancing phytoremediation through the use of transgenics and endophytes, New Phytol. 179 (2008) 318-333.

DOI: 10.1111/j.1469-8137.2008.02446.x

Google Scholar

[105] H.D. Bradshaw, R. Ceulemans, J. Davis, et al., Emerging model systems in plant biology: poplar (Populus) as a model forest tree, J. Plant Growth Regul. 19 (2000) 306-313.

DOI: 10.1007/s003440000030

Google Scholar

[106] A.G. Khan, C. Kuek, T.M. Chaudhry, et al., Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation, Chemosphere. 41 (2000) 197-207.

DOI: 10.1016/s0045-6535(99)00412-9

Google Scholar

[107] G.I. Burd, D.G. Dixon and B.R. Glick, Plant growth-promoting bacteria that decrease heavy metal toxicity in plants, Can. J. Microbiol. 46 (2000) 237-45.

DOI: 10.1139/w99-143

Google Scholar

[108] P.C. Abhilash and M. Yunus, Can we use biomass produced from phytoremediation? Biomass Bioenergy. 35 (2011) 1371-1372.

DOI: 10.1016/j.biombioe.2010.12.013

Google Scholar