Preparation of Stable Pt Nanoparticles Supported by Mesoporous Silica SBA-15

Article Preview

Abstract:

A simple two-step procedure towards the Pt nanoparticles and mesoporou silicate SBA-15 composite was developed in this work. The ultrasonic irradiation and the calcinations involved in the preparation did not destroy the size and morphology of prepared Pt nanoparticles, and no agglomeration of Pt nanoparticles was observed, thus stable Pt nanoparticles supported by SBA-15 host were formed. The hexagonal ordered structure of SBA-15 also remained. This stable composite are mainly used as the starting material in fabricating stable Pt nanoparticles doped glass.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

539-544

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.R. Jana, L. Gearheart, C.J. Murphy, Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles, Chem. Mater. 13(2001)2313-2322.

DOI: 10.1021/cm000662n

Google Scholar

[2] K.S. Kim, D. Demberelnyamba, H. Lee, Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids, Langmuir 20(2003)556-560.

DOI: 10.1021/la0355848

Google Scholar

[3] H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water, J. Am. Chem. Soc. 127(2005)9374-9375.

DOI: 10.1021/ja052161e

Google Scholar

[4] H. Tsunoyama, N. Ichikuni, H. Sakurai, T. Tsukuda, Effect of electronic structures of au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis, J. Am. Chem. Soc. 131(2009)7086-7093.

DOI: 10.1021/ja810045y

Google Scholar

[5] C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen, Angew. Chem. Int. Edit. 47(2008)3588-3591.

DOI: 10.1002/anie.200800073

Google Scholar

[6] A.D. Moore, S.M. Holmes, E.P.L. Roberts, Evaluation of porous carbon substrates as catalyst supports for the cathode of direct methanol fuel cells, RSC Adv. 2(2012)1669-1674.

DOI: 10.1039/c1ra01121a

Google Scholar

[7] M. Boualleg, S. Norsic, D. Baudouin, R. Sayah, E.A. Quadrelli, J.M. Basset, et al., Selective and regular localization of accessible pt nanoparticles inside the walls of an ordered silica: Application as a highly active and well-defined heterogeneous catalyst for propene and styrene hydrogenation reactions, J. Catal. 284(2011).

DOI: 10.1016/j.jcat.2011.09.003

Google Scholar

[8] S. Mandal, D. Roy, R.V. Chaudhari, M. Sastry, Pt and pd nanoparticles immobilized on amine-functionalized zeolite: Excellent catalysts for hydrogenation and heck reactions, Chem. Mater. 16(2004)3714-3724.

DOI: 10.1021/cm0352504

Google Scholar

[9] W. Huang, J.N. Kuhn, C.K. Tsung, Y. Zhang, S.E. Habas, P. Yang, et al., Dendrimer templated synthesis of one nanometer rh and pt Particles supported on mesoporous silica: Catalytic activity for ethylene and pyrrole hydrogenation, Nano Lett. 8(2008).

DOI: 10.1021/nl801325m

Google Scholar

[10] T. Sakai, P. Alexandridis, Size- and shape-controlled synthesis of colloidal gold through autoreduction of the auric cation by poly(ethylene oxide)–poly(propylene oxide) block copolymers in aqueous solutions at ambient conditions, Nanotechnology 16(2005).

DOI: 10.1088/0957-4484/16/7/006

Google Scholar

[11] X. Zou, E. Ying, S. Dong, Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties, Nanotechnology 17(2006)4758-4764.

DOI: 10.1088/0957-4484/17/18/038

Google Scholar

[12] Z.J. Wang, Y. Xie, C.J. Liu, Synthesis and characterization of noble Metal (pd, pt, au, ag) nanostructured materials confined in the channels of mesoporous SBA-15, J. Phys. Chem. C 112(2008)19818-19824.

DOI: 10.1021/jp805538j

Google Scholar

[13] C.M. Yang, P.H. Liu, Y.F. Ho, C.Y. Chiu, K.J. Chao, Highly dispersed metal nanoparticles in functionalized SBA-15, Chem. Mater. 15(2002)275-280.

DOI: 10.1021/cm020822q

Google Scholar

[14] Z. Kónya, V.F. Puntes I. Kiricsi, J. Zhu, P. Alivisatos, G.A. Somorjai, Novel two-step synthesis of controlled size and shape platinum nanoparticles encapsulated in mesoporous silica, Catal. Lett. 81(2002)137-140.

DOI: 10.1023/a:1016505912884

Google Scholar

[15] Z. Kónya, V.F. Puntes I. Kiricsi, J. Zhu, P. Alivisatos, G.A. Somorjai, Nanocrystal templating of silica mesopores with tunable pore sizes, Nano Lett. 2(2002)907-910.

DOI: 10.1021/nl0256661

Google Scholar

[16] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc. 120(1998)6024-6036.

DOI: 10.1021/ja974025i

Google Scholar

[17] D. Zhao, J. Feng, Q. Huo,N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279(1998)548-552.

DOI: 10.1126/science.279.5350.548

Google Scholar

[18] T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, Size control of monodispersed pt nanoparticles and their 2D organization by electrophoretic deposition, J. Phys. Chem. B 103(1999)3818-3827.

DOI: 10.1021/jp983478m

Google Scholar

[19] A. Galarneau, H. Cambon, F. Di Renzo, F. Fajula, True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature, Langmuir 17(2001)8328-8335.

DOI: 10.1021/la0105477

Google Scholar