Effect of Ni on Microstructure and Mechanical Properties of Bulk Nanocrystalline Fe-Al Based Alloys Prepared by Aluminothermic Reaction

Article Preview

Abstract:

Bulk nanocrystalline Fe-Al based alloys with 5, 10 and 15 wt. % Ni were prepared by aluminothermic reaction. The alloys were analyzed by electron probe microanalyzer, X-ray diffraction and transmission electron microscope. Compressive yield strength and hardness of the alloys were tested. The experimental results showed that all of the alloys consisted of Fe-Al-Ni matrix and small amount of Al2O3 sphere. The matrix phases of the alloys with 5 and 10 wt. % Ni had disordered α-Fe solid solution, while the matrix phases of the alloys with 15 wt. % Ni had disordered α-Fe solid solution, NiAl phase and Fe3AlCx phase. Average grain sizes of the matrix phases of the alloys were about 20 nm. The alloys with 5 wt.% Ni had the best plasticity, but the alloys with 15 wt. % Ni had the highest yield strength and hardness. Yield strength of those alloys is higher than that of coarse-grained Fe3Al.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

715-721

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. S. Stoloff, Iron aluminides: present status and future prospects, Mater. Sci. Eng. A 258(1998)1-14.

Google Scholar

[2] J. H. Westbrook, R. L. Fleischer, Intermetallic compounds, John Wiely and Sons Inc, New York, (2000).

Google Scholar

[3] P. Josef, S. Guido, The relation between the shape of the stress anomaly and the structure of Fe3Al alloys, Intermetallics. 10(2002)717-722.

DOI: 10.1016/s0966-9795(02)00045-6

Google Scholar

[4] Y. D. Huang, W.Y. Yang, Z.Q. Sun, Effect of the alloying element chromium on the room temperature ductility of Fe3Al intermetallics, Intermetallics. 9(2001)19-124.

DOI: 10.1016/s0966-9795(00)00115-1

Google Scholar

[5] R. G. Baligidad, A. Radhakrishna, Abhijit Datta, V.V. Rama Rao, Effect of molybdenum addition on structure and properties of high carbon Fe3Al based intermetallic alloy, Mater. Sci. Eng. A. 313(2001)117–122.

DOI: 10.1016/s0921-5093(01)00962-5

Google Scholar

[6] D. G. Morris, M. A. Morris-Muñoz, The influence of microstructure on the ductility of iron aluminides, Intermetallics. 7(1999)1121-1129.

DOI: 10.1016/s0966-9795(99)00038-2

Google Scholar

[7] G. Ji, Thierry Grosdidier, Frédéric Bernard, Bulk FeAl nanostructured materials obtained by spray forming and spark plasma sintering, J. Alloys. Comp. 434–435(2007) 358-361.

DOI: 10.1016/j.jallcom.2006.08.279

Google Scholar

[8] M. A. Venkataswamy, J. A. Schneider, J. R. Groza, Mechanical Alloying Processing and Rapid Plasma Activated Sintering Consolidation of Nanocrystalline Iron-Aluminides, Mater. Sci. Eng. A. 207(1996)153-158.

DOI: 10.1016/0921-5093(95)10034-2

Google Scholar

[9] Y. Minamino, Y. Koizumi, N. Tsuji, N. Hirohata, Microstructure and Mechanical Properties of Buck Nanocrystalline Fe-Al-C Alloys Mand by Mechanically Alloying with Subsequence Spark Plasma Sintering, Sci Technol Adv Mater. 5(2004)133-143.

DOI: 10.1016/j.stam.2003.11.004

Google Scholar

[10] M. A. Morris-Muñoz, A. Dodge, D.G. Morris, Structure, strength and toughness of nanocrystalline FeAl, NanoStruct. Mater. 11(1999)873–885.

DOI: 10.1016/s0965-9773(99)00385-2

Google Scholar

[11] P.Q. La, J. Yang, D. J. H. Cockayne, W.M. Liu, Q.J. Xue, Bulk nanocrystalline Fe3Al-based material prepared by aluminothermic reaction, Adv. Mater. 18(2006)733-737.

DOI: 10.1002/adma.200501684

Google Scholar

[12] P. Q. La, Y. P. Wei, R. J. Lv, Y. Zhao, Y. Yang. Effect of Mn element on microstructure and mechanical properties of bulk nanocrystalline Fe3Al based materials prepared by aluminothermic reaction, Mater. Sci. Eng. A . 527(2010)2313–2319.

DOI: 10.1016/j.msea.2009.12.043

Google Scholar

[13] P. Q. La, X. F. Lu, Y. Yang, Y. P. Wei, Y. Zhao and C. J. Cheng, Effectof Mo on microstructure and mechanical properties of bulk nanocrystalline Fe3Al materials prepared by aluminothermic reaction Mater. Sci. Technol. 27(2011)1303-1308.

DOI: 10.1179/026708310x12738371693094

Google Scholar

[14] P. Q. La, Y. P. Wei, Y. Yang, Y. P. Bai, X. F. Lu, X. Guo, et al. Effect of annealing on microstructure and mechanical properties of bulk nanocrystalline Fe 3Al alloy with 5 wt. % Cu prepared by aluminothermic reaction , Mater. Sci. Eng. A. 528(2011).

DOI: 10.1016/j.msea.2011.05.043

Google Scholar

[15] P. Q. La, Hongding Wang, Yaping Bai, Yang Yang, Yupeng Wei, Xuefeng Lu, et al. Microstructures and mechanical properties of bulk nanocrystalline Fe3Al materials with 5, 10 and 15 wt. % Cr prepared by aluminothermic reaction, Mater. Sci. Eng. A. 528(2011).

DOI: 10.1016/j.msea.2011.05.011

Google Scholar

[16] Yupeng Wei, Peiqing La, Meidan Que, Wensheng Li, Yang Yang, Hongding Wang, et al. Microstructures and mechanical properties of bulk nanocrystalline Fe3Al materials with 5, 10 and 15 wt. % Cu prepared by aluminothermic reaction, Adv. Mater. Res. 236-238(2011).

DOI: 10.4028/www.scientific.net/amr.236-238.2191

Google Scholar

[17] A. Schneider, L. Falat, G. Sauthoff, G. Frommeyer, Microstructures and mechanical properties of Fe3Al-based Fe–Al–C alloys, Intermetallics. 13(2005)1322.

DOI: 10.1016/j.intermet.2005.01.013

Google Scholar

[18] McKamey C. G, Horton J. A, Liu. C. T, J Mater. Res. 4(1989)115-117.

Google Scholar

[19] McKamey C . G, Horton J. A, Liu. C. T. Effect of chromium on room temperature ductility and fracture mode in Fe 3Al, Scripta Metall. 22(1988)1679-1681.

DOI: 10.1016/s0036-9748(88)80265-5

Google Scholar

[20] P. Q. La, Q.J. Xue, W. M. Liu. Study of wear resistant MoSi2–SiC composites fabricated by self-propagating high temperature synthesis casting , Intermetallics. 11 (2003)541-550.

DOI: 10.1016/s0966-9795(03)00041-4

Google Scholar

[21] M.C. Flemings. Solidification Processing, McGraw-Hill Book Company, New York, (1974).

Google Scholar

[22] P. Villars, A. Prince, H. Okamoto. Handbook of Ternary Alloy Phase Diagrams, The materials Information Society, Janpan, (1994).

Google Scholar

[23] Herrmann J, Inden G, Sauthoff G. Herrmann J, Inden G, Sauthoff G, Deformation behaviour of iron-rich iron-aluminum alloys at low temperatures, Acta Materialia. 51(2003)2847-2857.

DOI: 10.1016/s1359-6454(03)00089-2

Google Scholar

[24] M. Palm, Concepts Derived from Phase Diagram Studies for the Strengthening of Fe-Al-Based Alloys, Intermetallics. 13(2005)1286–1295.

DOI: 10.1016/j.intermet.2004.10.015

Google Scholar

[25] L. M. Pike, I. M. Anderson, C. T. Liu, Y.A. Chang, Site occupancies, point defect concentrations, and solid solution hardening in B2 (Ni, Fe)Al, Acta Materialia. 50(2002) 3859–3879.

DOI: 10.1016/s1359-6454(02)00192-1

Google Scholar

[26] Chuncheng Hao, Zuolin Cui, Yansheng Yin, Zhikun Zhang, Preparation and Mechanical Properties of Fe3Al Nanostructured Intermetallics, J. Nanopart. 4 (2002)107-110.

DOI: 10.1023/a:1020191731323

Google Scholar

[27] Jian Wang, Jiandong Xing, Zhibin Qiu, Xiaohui Zhi, Li Cao, Effect of fabrication methods on microstructure and mechanical properties of Fe3Al-based alloys, J. Alloys Compd. 488 (2009) 117-122.

DOI: 10.1016/j.jallcom.2009.08.138

Google Scholar

[28] Schneider A, Falat L, Sauthoff G, Frommeyer G, Microstructures and mechanical properties of Fe3Al-based Fe–Al–C alloys, Intermetallics. 13(2005)1322-1331.

DOI: 10.1016/j.intermet.2005.01.013

Google Scholar

[29] Falat L, Schneider A, Sauthoff G, Frommeyer G, Mechanical properties of Fe–Al–M–C (M=Ti, V, Nb, Ta) alloys with strengthening carbides and Laves phase, Intermetallics. 13(2005)1256-1262.

DOI: 10.1016/j.intermet.2004.05.010

Google Scholar