Effect of Fe on Crystallization Process of Zr-Co-Al-(Fe) Bulk Metallic Glasses

Article Preview

Abstract:

The change in the internal states of Zr56Co28Al16 bulk metallic glass (BMG) upon minor substitution of Co with Fe was investigated for alloys with different compositions of Zr56Co28-xAl16Fex (x = 0, 1 and 2, respectively). Results exhibited that the ductile Zr-Co-Al-Fe BMGs were obtained and showed better glass-forming ability (GFA) via a small amount of Co partial replacement by Fe. In addition, the addition of a small amount of Fe enhanced the crystallization process and reduced the activation energy. The micro-alloying with Fe reduced the heat of mixing, which made the rearrangement of atoms easier during the crystallization process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

734-739

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. He, J. Eckert, W. Loser, L. Schultz, Novel Ti-base nanostructure-dendrite composite with enhanced plasticity, Nat. Mater. 2 (2003) 33-37.

DOI: 10.1038/nmat792

Google Scholar

[2] W.H. Wang, Metallic glasses: Family traits, Nat. Mater. 11 (2012) 275-276.

Google Scholar

[3] Y. Zhang, W.H. Wang, A.L. Greer, Making metallic glasses plastic by control of residual stress, Nat. Mater. 5 (2006) 857-860.

DOI: 10.1038/nmat1758

Google Scholar

[4] K.F. Yao, C.Q. Zhang, Fe-based bulk metallic glass with high plasticity, Appl. Phys. Lett., 90 (2007) 061901.

DOI: 10.1063/1.2437722

Google Scholar

[5] Z.F. Zhang, F.F. Wu, W. Gao, J. Tan, Z.G. Wang, M. Stoica, J. Das, J. Eckert, B.L. Shen, A. Inoue, Wavy cleavage fracture of bulk metallic glass, Appl. Phys. Lett. 89 (2006) 251917.

DOI: 10.1063/1.2422895

Google Scholar

[6] L.H. Dai, M. Yan, L.F. Liu, Y.L. Bai, Adiabatic shear banding instability in bulk metallic glasses, Appl. Phys. Lett. 87 (2005) 141916.

DOI: 10.1063/1.2067691

Google Scholar

[7] M.Q. Jiang, L.H. Dai, Intrinsic correlation between fragility and bulk modulus in metallic glasses, Phys. Rev. B. 76 (2007) 054204.

DOI: 10.1103/physrevb.76.054204

Google Scholar

[8] Y. Zhang, W. Xu, H. Tan, Y. Li, Microstructure control and ductility improvement of La-Al-(Cu, Ni) composites by Bridgman solidification, Acta Mater. 53 (2005) 2607-2616.

DOI: 10.1016/j.actamat.2005.02.020

Google Scholar

[9] J. -Q. Wang, Y. -H. Liu, M. -W. Chen, D.V. Louzguine-Luzgin, A. Inoue, J.H. Perepezko, Excellent capability in degrading azo dyes by MgZn-based metallic glass powders, Sci. Rep. 2 (2012) 418.

DOI: 10.1038/srep00418

Google Scholar

[10] J. -Q. Wang, Y. -H. Liu, M. -W. Chen, G. -Q. Xie, D.V. Louzguine-Luzgin, A. Inoue, J.H. Perepezko, Rapid Degradation of Azo Dye by Fe-Based Metallic Glass Powder, Adv. Funct. Mater. 22 (2012) 2567-2570.

DOI: 10.1002/adfm.201103015

Google Scholar

[11] H.B. Lou, Y.K. Fang, Q.S. Zeng, Y.H. Lu, X.D. Wang, Q.P. Cao, K. Yang, X.H. Yu, L. Zheng, Y.D. Zhao, W.S. Chu, T.D. Hu, Z.Y. Wu, R. Ahuja, J.Z. Jiang, Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses, Sci Rep. 2 (2012).

DOI: 10.1038/srep00376

Google Scholar

[12] Q. Zeng, H. Sheng, Y. Ding, L. Wang, W. Yang, J. -Z. Jiang, W.L. Mao, H. -K. Mao, Long-Range Topological Order in Metallic Glass, Science. 332 (2011 ) 1404-1406.

DOI: 10.1126/science.1200324

Google Scholar

[13] X.F. Wu, L.K. Meng, W. Zhao, Z.Y. Suo, Y. Si, K.Q. Qiu, Crystallization kinetics of misch metal based bulk metallic glasses, J. Rare Earths. 25 (2007) 189-193.

DOI: 10.1016/s1002-0721(07)60071-4

Google Scholar

[14] N. Bayri, T. Izgi, H. Gencer, P. Sovak, M. Gunes, S. Atalay, Crystallization kinetics of Fe73. 5-xMnxCu1Nb3Si13. 5B9 (x=0, 1, 3, 5, 7) amorphous alloys, J. Non-Cryst. Solids, 355 (2009) 12-16.

DOI: 10.1016/j.jnoncrysol.2008.09.037

Google Scholar

[15] Y. Wang, Y. Wang, J. Wang, J. Wang, Z. Zheng, Crystallization behavior of Ce70−xAl10Cu20Cox (x=0, 1, 3, 5 at. %) amorphous alloys, J. Non-Cryst. Solids. 358 (2012) 1735-1739.

DOI: 10.1016/j.jnoncrysol.2012.05.001

Google Scholar

[16] X. Zhou, H. Kou, J. Wang, J. Li, L. Zhou, Crystallization and compressive behaviors of Ti40Zr25Ni8Cu9Be18 BMG cast from different liquid states, Intermetallics. 28 (2012) 45-50.

DOI: 10.1016/j.intermet.2012.03.061

Google Scholar

[17] M.M.A. Imran, D. Bhandari, N.S. Saxena, Kinetic studies of bulk Ge22Se78-xBix (x=0, 4 and 8) semiconducting glasses, J. Therm. Anal. Calorim. 65 (2001) 257-274.

Google Scholar

[18] J. Tan, F.S. Pan, Y. Zhang, Z. Wang, M. Stoica, B.A. Sun, U. Kühn, J. Eckert, Effect of Fe addition on glass forming ability and mechanical properties in Zr–Co–Al–(Fe) bulk metallic glasses, Mater. Sci. Eng., A. 539 (2012) 124-127.

DOI: 10.1016/j.msea.2012.01.068

Google Scholar

[19] J. Tan, Y. Zhang, B.A. Sun, M. Stoica, C.J. Li, K.K. Song, U. Kühn, F.S. Pan, J. Eckert, Correlation between internal states and plasticity in bulk metallic glass, Appl. Phys. Lett. 98 (2011) 151906.

DOI: 10.1063/1.3580774

Google Scholar

[20] J. Tan, Y. Zhang, M. Stoica, U. Kühn, N. Mattern, F.S. Pan, J. Eckert, Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass, Intermetallics. 19 (2011) 567-571.

DOI: 10.1016/j.intermet.2010.12.006

Google Scholar

[21] A. Inoue, T. Zhang, T. Masumoto, Glass-forming ability of alloys, J. Non-Cryst. Solids. 156 (1993) 473-480.

DOI: 10.1016/0022-3093(93)90003-g

Google Scholar

[22] Y.M. Wang, C.H. Shek, J.B. Qiang, C.H. Wong, Q. Wang, X.F. Zhang, C. Dong, The e/a criterion for the largest glass-forming abilities of the Zr-Al-Ni(Co) alloys, Mater. Trans. 45 (2004) 1180-1183.

DOI: 10.2320/matertrans.45.1180

Google Scholar

[23] Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater. 50 (2002) 3501-3512.

DOI: 10.1016/s1359-6454(02)00166-0

Google Scholar

[24] A. Stoica, J. Eckert, S. Roth, Z.F. Zhang, L. Schultz, W.H. Wang, Mechanical behavior of Fe65. 5Cr4Mo4Ga4P12C5B5. 5 bulk metallic glass, Intermetallics. 13 (2005) 764-769.

DOI: 10.1016/j.intermet.2004.12.016

Google Scholar

[25] A. Inoue, B.L. Shen, H. Koshiba, H. Kato, A.R. Yavari, Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties, Nat. Mater. 2 (2003) 661-663.

DOI: 10.1038/nmat982

Google Scholar

[26] H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem. 29 (1957) 1702-1706.

DOI: 10.1021/ac60131a045

Google Scholar

[27] T. Ozawa, Kinetics in differential thermal analysis, Bull Chem Soc Japan, 38 (1965) 1881.

Google Scholar

[28] M. Lasocka, M. Harmelin, The Effect of Heating Rate Range on the Activation-Energy for Glass-to-Crystal Transition, Scr. Metall. 18 (1984) 1095-1098.

DOI: 10.1016/0036-9748(84)90185-6

Google Scholar

[29] L.S. Garca-Coln, L.F. del Castillo, P. Goldstein, Theoretical basis for the Vogel-Fulcher-Tammann equation, Phys. Rev. B. 40 (1989) 7040.

DOI: 10.1103/physrevb.40.7040

Google Scholar

[30] Z.J. Yan, S.R. He, J.R. Li, Y.H. Zhou, On the crystallization kinetics of Zr60Al15Ni25 amorphous alloy, J. Alloys Compd. 368 (2004) 175-179.

DOI: 10.1016/j.jallcom.2003.08.074

Google Scholar

[31] M. Iqbal, J.I. Akhter, W.S. Sun, J.Z. Zhao, M. Ahmad, W. Wei, Z.Q. Hu, H.F. Zhang, Effect of Fe substitution on the crystallization and mechanical properties of Zr55Cu30Al10Ni5-xFex alloys, Mater. Lett. 60 (2006) 662-665.

DOI: 10.1016/j.matlet.2005.09.053

Google Scholar

[32] Q. Wang, J.M. Pelletier, Y.D. Dong, Y.F. Ji, Structural relaxation and crystallisation of bulk metallic glasses Zr41Ti14Cu12. 5Ni10-xBe22. 5Fex (x=0 or 2) studied by mechanical spectroscopy, Mater. Sci. Eng., A. 370 (2004) 316-320.

DOI: 10.1016/j.msea.2003.08.084

Google Scholar