[1]
W. Klement, R.H. Willens, P. Duwez, Non-crystalline Structure in solidified Gold-Silicon Alloys, Nature. 187(1960)869-870.
DOI: 10.1038/187869b0
Google Scholar
[2]
Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater, 48(2000) 279-301.
DOI: 10.1016/s1359-6454(99)00300-6
Google Scholar
[3]
Byrne. CJ, Eldrup. M, Bulk metallic glasses, Science. 321(2008) 502-503.
DOI: 10.1126/science.1158864
Google Scholar
[4]
K.J. Huang, Y. Li, W. S Wang, et al, Wear and corrosion properties of laser cladded Cu47Ti34Zr11Ni8/SiC amorphous composite coatings on AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China. 20(2010) 1351-1355.
DOI: 10.1016/s1003-6326(09)60303-4
Google Scholar
[5]
P.L. Zhang, H. Yan, C.W. Yao, et al, Synthesis of Fe-Ni-B-Si-Nb amorphous and crystalline composite coatings by laser cladding and remelting, Surf Coat Tech. 206(2011) 1229-1236.
DOI: 10.1016/j.surfcoat.2011.08.039
Google Scholar
[6]
J. Dutta Majumdar, A. Weisheit, B.L. Mordike, et al, Laser surface alloying of Ti with Si, Al and Si+Al for an improved oxidation resistance, Sci. Eng. A. 266(1999) 123-134.
DOI: 10.1016/s0921-5093(99)00045-3
Google Scholar
[7]
L.E. Rehn, S.T. Picraux, H. Wiedersich (Eds. ), Surface Alloying by Ion, Electron and Laser Beam, ASM, Metals Park, OH, (1987).
Google Scholar
[8]
P.A. Molian, Surface Modification Technologies—an Engineer's Guide, in: T.S. Sudarshan (Ed. ), Marcel Dekker Inc, New York, (1989).
Google Scholar
[9]
K.J. Huang, C.S. Xie and T.M. Yue, Microsture of Cu-based amorphous composite coatings on AZ91D magnesium alloy by laser cladding, Mater. Sci. Technol. 25(2009) 492-498.
Google Scholar
[10]
T.M. Yue, Y.P. Su and H.O. Yang, Laser cladding of Zr65Al7. 5Ni10Cu17. 5 amorphous alloy on magnesium, Materials Letters. 61(2007) 209-212.
DOI: 10.1016/j.matlet.2006.04.033
Google Scholar
[11]
I. Manna, J. Dutta, B. Ramesh Chandra, et al, Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel, Surf Coat Tech. 201(2006) 434-440.
DOI: 10.1016/j.surfcoat.2005.11.138
Google Scholar
[12]
Inoue. A, Takeuchi. A, Recent development and application products of bulk glassy alloys, Acta Mater. 59(2011) 2243-2267.
DOI: 10.1016/j.actamat.2010.11.027
Google Scholar
[13]
M.G. Fontana (Ed. ), Corrosion Engineering, McGraw-Hill, New York, (1987).
Google Scholar
[14]
G. Li, Laser Cladding and Laser-induced Self-propagating Reaction Synthesis of Zr-based Amor-phous Alloy, Dissertation of Dalian University of Technology, (2003) 35-45 (in Chinese).
Google Scholar
[15]
Inoue A, Zhang T, Nishiyama N, et al, Preparation of 16 mm diameter rod of amorphous Zr65Al7. 5Ni10Cu17. 5 alloy, Mater Trans JIM 34(1993) 1234-1237.
DOI: 10.2320/matertrans1989.34.1234
Google Scholar
[16]
Jendrzejewski. R, Sliwin´ski. G, Krawczuk M, Ostachowicz W, Temperature and stress fields induced during laser cladding, Comput Struct, 82(2004) 653-658.
DOI: 10.1016/j.compstruc.2003.11.005
Google Scholar
[17]
H. Kato, T. Hirano, A. Matsuo, et al, High strength and good ductility of Zr55Al10Ni5Cu30 bulk glass containing ZrC particles, Scripta Mater, 43(2000) 503-507.
DOI: 10.1016/s1359-6462(00)00452-8
Google Scholar
[18]
E. Soinila, K. Antin, S. Bossuyt, H. Haninen, Bulk metallic glass tube casting, J. Alloys Compd, 509(2011) 210-213.
DOI: 10.1016/j.jallcom.2010.12.145
Google Scholar
[19]
Y.J. Sun a, D.D. Qu a, Y.J. Huang, et al, Zr–Cu–Ni–Al bulk metallic glasses with superhigh glass-forming ability, Acta Materialia. 57(2009)1290-1299.
DOI: 10.1016/j.actamat.2008.11.007
Google Scholar