Fabrication of Zr55Al10Ni5Cu30 Amorphous Composite Coating on Plain Carbon Steel by Laser Cladding and Remelting

Article Preview

Abstract:

A Zr-based amorphous composite coating was fabricated by laser cladding and remelting on plain carbon steel. The amorphous phase contents of coatings were tailored by controlling the power density. The effect of amorphous phase content along the depth direction on the microhardness and corrosion resistance of the coating was studied. The results showed that the content of amorphous phase significantly decreased from the remelted layer to the cladded layer. In addition, it was found that the maximum microhardness of the coating were about 1061 HV0.1, observed 200 μm beneath the surface. Potentiodynamic polarization studies in 3.56 wt.% NaCl solution indicated that the remelted layer exhibited excellent corrosion resistance due to the high amount of amorphous phase.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

746-753

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Klement, R.H. Willens, P. Duwez, Non-crystalline Structure in solidified Gold-Silicon Alloys, Nature. 187(1960)869-870.

DOI: 10.1038/187869b0

Google Scholar

[2] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater, 48(2000) 279-301.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[3] Byrne. CJ, Eldrup. M, Bulk metallic glasses, Science. 321(2008) 502-503.

DOI: 10.1126/science.1158864

Google Scholar

[4] K.J. Huang, Y. Li, W. S Wang, et al, Wear and corrosion properties of laser cladded Cu47Ti34Zr11Ni8/SiC amorphous composite coatings on AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China. 20(2010) 1351-1355.

DOI: 10.1016/s1003-6326(09)60303-4

Google Scholar

[5] P.L. Zhang, H. Yan, C.W. Yao, et al, Synthesis of Fe-Ni-B-Si-Nb amorphous and crystalline composite coatings by laser cladding and remelting, Surf Coat Tech. 206(2011) 1229-1236.

DOI: 10.1016/j.surfcoat.2011.08.039

Google Scholar

[6] J. Dutta Majumdar, A. Weisheit, B.L. Mordike, et al, Laser surface alloying of Ti with Si, Al and Si+Al for an improved oxidation resistance, Sci. Eng. A. 266(1999) 123-134.

DOI: 10.1016/s0921-5093(99)00045-3

Google Scholar

[7] L.E. Rehn, S.T. Picraux, H. Wiedersich (Eds. ), Surface Alloying by Ion, Electron and Laser Beam, ASM, Metals Park, OH, (1987).

Google Scholar

[8] P.A. Molian, Surface Modification Technologies—an Engineer's Guide, in: T.S. Sudarshan (Ed. ), Marcel Dekker Inc, New York, (1989).

Google Scholar

[9] K.J. Huang, C.S. Xie and T.M. Yue, Microsture of Cu-based amorphous composite coatings on AZ91D magnesium alloy by laser cladding, Mater. Sci. Technol. 25(2009) 492-498.

Google Scholar

[10] T.M. Yue, Y.P. Su and H.O. Yang, Laser cladding of Zr65Al7. 5Ni10Cu17. 5 amorphous alloy on magnesium, Materials Letters. 61(2007) 209-212.

DOI: 10.1016/j.matlet.2006.04.033

Google Scholar

[11] I. Manna, J. Dutta, B. Ramesh Chandra, et al, Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel, Surf Coat Tech. 201(2006) 434-440.

DOI: 10.1016/j.surfcoat.2005.11.138

Google Scholar

[12] Inoue. A, Takeuchi. A, Recent development and application products of bulk glassy alloys, Acta Mater. 59(2011) 2243-2267.

DOI: 10.1016/j.actamat.2010.11.027

Google Scholar

[13] M.G. Fontana (Ed. ), Corrosion Engineering, McGraw-Hill, New York, (1987).

Google Scholar

[14] G. Li, Laser Cladding and Laser-induced Self-propagating Reaction Synthesis of Zr-based Amor-phous Alloy, Dissertation of Dalian University of Technology, (2003) 35-45 (in Chinese).

Google Scholar

[15] Inoue A, Zhang T, Nishiyama N, et al, Preparation of 16 mm diameter rod of amorphous Zr65Al7. 5Ni10Cu17. 5 alloy, Mater Trans JIM 34(1993) 1234-1237.

DOI: 10.2320/matertrans1989.34.1234

Google Scholar

[16] Jendrzejewski. R, Sliwin´ski. G, Krawczuk M, Ostachowicz W, Temperature and stress fields induced during laser cladding, Comput Struct, 82(2004) 653-658.

DOI: 10.1016/j.compstruc.2003.11.005

Google Scholar

[17] H. Kato, T. Hirano, A. Matsuo, et al, High strength and good ductility of Zr55Al10Ni5Cu30 bulk glass containing ZrC particles, Scripta Mater, 43(2000) 503-507.

DOI: 10.1016/s1359-6462(00)00452-8

Google Scholar

[18] E. Soinila, K. Antin, S. Bossuyt, H. Haninen, Bulk metallic glass tube casting, J. Alloys Compd, 509(2011) 210-213.

DOI: 10.1016/j.jallcom.2010.12.145

Google Scholar

[19] Y.J. Sun a, D.D. Qu a, Y.J. Huang, et al, Zr–Cu–Ni–Al bulk metallic glasses with superhigh glass-forming ability, Acta Materialia. 57(2009)1290-1299.

DOI: 10.1016/j.actamat.2008.11.007

Google Scholar