Microstructure and Electrochemical Performances of AlxFeCoNiCr(B) High Entropy Alloys

Article Preview

Abstract:

High entropy alloys are new alloys composed of over five principal elements with each having an atomic percentage in the range of 5%~35%, which break through the concept of traditional alloys design. In this paper, AlxFeCoNiCr (B) high entropy alloys were prepared in an vacuum arc induction melting furnace. The microstructure presents simple solid solution structure, and the fraction of FCC crystal structure decreased with increasing of Al content. Chromium tends to segregate at the inter-dendrite grain boundary. Electrochemical investigations indicated that AlxFeCoNiCr (B) high entropy alloys were more corrosion resistance than 316L stainless steel.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

728-733

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Suryanarayana, A. Inoue. BULK METALLIC GLASSES. Taylor and Francis Group, New York, 2011: 2–8.

Google Scholar

[2] J.W. Yeh, S.K. Chen, S.H. Lin, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. ADVANCED ENGINEERING MATERIALS, 2004, 6(5): 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[3] R.A. Swalin. Thermodynamics of Solids, seconded, Wiley, NewYork, (1991).

Google Scholar

[4] C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A, 2005, 36A: 1263-71.

DOI: 10.1007/s11661-005-0218-9

Google Scholar

[5] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater, 2004, 6: 74-8.

DOI: 10.1002/adem.200300507

Google Scholar

[6] J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, et al. Formation of simple crystalstructure in Cu-Co-Ni-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall Mater Trans A, 2004, 35A: 2533-6.

DOI: 10.1007/s11661-006-0234-4

Google Scholar

[7] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent. Microstructural development in equiatomic multicomponent alloys. Material Science and Engineering,A. 2004, 375-377: 213~8.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[8] M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, C.P. Tu. Microstructure and properties of Al0. 5CoCrCuFeNiTix(x=0-2. 0) high-entropy alloys. Materials Transactions, 2006, 47(5): 139-140.

Google Scholar

[9] J.W. Yeh. Recent progress in high-entropy alloys. Ann. Chim, -Sci. Mat. 2006, 31(6): 633-48.

DOI: 10.3166/acsm.31.633-648

Google Scholar

[10] J.C. Gao, R. Li. The development of studies in high-entropy alloy. Journal of Functional Materials, 2008, 39(7): 1059-61.

Google Scholar

[11] S. Ranganathan. Alloyed pleasures: Multimetallic cocktails, CURRENT SCIENCE, 2003, 85(10): 1404-6.

Google Scholar

[12] H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi(0≤x≤2) high-entropy alloys. Materials Science and Engineering B, 2009, 163: 184-9.

DOI: 10.1016/j.mseb.2009.05.024

Google Scholar

[13] Y.F. Kao, T.D. Lee, S.K. Chen, Y.S. Chang. Electrochemical passive properties of AlxCoFeNi(x=0, 0. 25, 0. 5, 1. 00) alloys in sulfuric acids. Corrosions Science, 2010, 52: 1026-34.

Google Scholar

[14] C.M. Lin, H.L. Tsai. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0. 5CoCrFeNi alloy. Intermetallics, 2011, 19: 288-94.

DOI: 10.1016/j.intermet.2010.10.008

Google Scholar

[15] Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corrosion Science, 2005, 47: 2257-79.

DOI: 10.1016/j.corsci.2004.11.008

Google Scholar

[16] Y.Y. Chen, T. Duval, U.D. Hong, J.W. Yeh, H.C. Shih, L.H. Wang, J.C. Oung. Corrosion properties of a novel bulk Cu0. 5NiAlCoCrFeSi glassy alloy in 288℃ high-purity water. Materials Letters, 2007, 61: 2692-6.

DOI: 10.1016/j.matlet.2006.03.158

Google Scholar

[17] C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih, Enhancing pitting corosion resistance of AlxCrFeMnNi high-entropy alloys by anodic treatment in sulfuric acid. Thin Solid Films, 2008, 517: 1301-5.

DOI: 10.1016/j.tsf.2008.06.014

Google Scholar

[18] C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, H.C. Shih. Effect of the aluminum content of AlxCrFeMnNi high-entropy alloys on the corrosion behavior in aqueous environments. Corrosion Science, 2008, 50: 2053-60.

DOI: 10.1016/j.corsci.2008.04.011

Google Scholar

[19] Y.L. Chou, J.W. Yeh, H.C. Shih. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1. 5CrFeNi1. 5Ti0. 5Mox in aqueous environments. Corrosion Science, 2010, 52: 2571-81.

DOI: 10.1016/j.corsci.2010.04.004

Google Scholar

[20] Y.J. Hsu, W.C. Chiang, J.K. Wu. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3. 5% sodium chloride solution. Materials Chemistry and Physics, 2005, 92: 112-7.

DOI: 10.1016/j.matchemphys.2005.01.001

Google Scholar

[21] J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, et al. Formational of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements. METALLURGICAL AND MATERIALS TRANSACTIONS A, 2004, 35A: 2533-6.

DOI: 10.1007/s11661-006-0234-4

Google Scholar

[22] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh. Microstructure and mechanical property of as-cast, -homogenized, and –deformed AlxCoCrFeNi(0≤x≤2) high-entropy alloys. Journal of Alloys and Compounds, 2009, 488: 57-64.

DOI: 10.1016/j.jallcom.2009.08.090

Google Scholar