[1]
E. Eisenbarth, D. Velten, M. Muller, R. Thull, J. Breme, Biocompatibility of β-stabilizing elements of titanium alloys, Biomaterials. 25(2004) 5705-5713.
DOI: 10.1016/j.biomaterials.2004.01.021
Google Scholar
[2]
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – a review, Prog. Mater. Sci. 54(2009) 397-425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[3]
W. Jiao, H.F. Li, K. Zhao, H.Y. Bai, Y.B. Wang, Y.F. Zheng, W.H. Wang, Development of CaZn based glassy alloys as potential biodegradable bone graft substitute, J Non-cryst solids. 357(2011) 3830-3840.
DOI: 10.1016/j.jnoncrysol.2011.08.003
Google Scholar
[4]
X.L. Zhang, G. Chen, T. Bauer, Mg-based bulk metallic glass composite with high bio-corrosion resistance and excellent mechanical properties, Intermetallics. 29(2012) 56-60.
DOI: 10.1016/j.intermet.2012.04.018
Google Scholar
[5]
M.Z. Ma, R.P. Liu, Y. Xiao, D.C. Lou, L. Liu, Q. Wang, Wear resistance of Zr-based bulk metallic glass applied in bearing rollers, Mater. Sci. Eng. A. 386(2004) 326-330.
DOI: 10.1016/s0921-5093(04)00973-6
Google Scholar
[6]
J. Schroers, G. Kumar, T.M. Hodges, S. Chan, T.R. Kyriakides, Bulk metallic glasses for biomedical applications, JOM-US. 61(2009) 21-29.
DOI: 10.1007/s11837-009-0128-1
Google Scholar
[7]
L. Huang, D.C. Qiao, B.A. Green, P.K. Liaw, J.F. Wang, S.J. Pang, Bio-corrosion study on zirconium-based bulk-metallic glasses, Intermetallics, 17(2009) 195-199.
DOI: 10.1016/j.intermet.2008.07.020
Google Scholar
[8]
J.W. Qiao, Y. Zhang, P. Feng, Q.M. Zhang, G.L. Chen, Strain rate response of mechanical behaviors for a Zr-based bulk metallic glass matrix composite, Mat. Sci. eng. A-struct. 515(2009) 141-145.
DOI: 10.1016/j.msea.2009.02.043
Google Scholar
[9]
J.W. Qiao, Y. Zhang, Z.L. Zheng, J.P. He, B.C. Wei, Synthesis of plastic Zr-based bulk metallic glass matrix composites by the copper-mould suction casting and the Bridgman solidification. J Alloys Compd. 477(2009) 436-439.
DOI: 10.1016/j.jallcom.2008.10.020
Google Scholar
[10]
J.W. Qiao, Y. Zhang, P.K. Liaw, Tailoring microstructures and mechanical pProperties of Zr-based bulk metallic glass matrix composites by the Bridgman solidification, Adv Eng Mater 10(2008) 1039-1042.
DOI: 10.1002/adem.200800149
Google Scholar
[11]
M. Ball, D.M. Grant, W.J. Lo, C.A. Scotchford, The effect of different surface morphology and roughness on osteoblast-like cells, J, Biomed, Mater, Res, 86A (2008) 637-647.
DOI: 10.1002/jbm.a.31652
Google Scholar
[12]
L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour, Mater. Sci. Eng. C. 23(2003) 551-560.
DOI: 10.1016/s0928-4931(03)00033-x
Google Scholar
[13]
K. Anselme, M. Bigerelle, Statistical demonstration of the relative effect of surface chemistry and roughness on human osteoblast short-term adhesion, J. Mater. Sci. Mater. Med. 17(2006) 471-479.
DOI: 10.1007/s10856-006-8475-8
Google Scholar
[14]
Y.Z. Yang, R. Cavin, J.L. Ong, Protein adsorption on titanium surfaces and their effect on osteoblsat attachment, J, Biomed, Mater, Res, 67A (2003) 344-349.
DOI: 10.1002/jbm.a.10578
Google Scholar
[15]
S. Faghihi, F. Azari, H. Li, M.R. Bateni, J.A. Szpunar, H. Vali, M. Tabrizian, The significance of crystallographic texture of titanium alloy substrates on pre-osteoblast responses. Biomaterials. 27(2006) 3532-3539.
DOI: 10.1016/j.biomaterials.2006.02.027
Google Scholar
[16]
L. Huang, Z. Cao, H.M. Meyer, P.K. Liaw, E. Garlea, J.R. Dunlap, T. Zhang, W. He, Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness, Acta Biomater. 7(2011) 395-405.
DOI: 10.1016/j.actbio.2010.08.002
Google Scholar