Investigation of Viscosity Measurements of Molten Cu-Zr-Al Alloys

Article Preview

Abstract:

Viscosity reflects kinetic behaviors of metallic glass liquids, as well as the changes of structures of liquids with temperature. In the present work, the viscosity of superheated Cu-Zr-Al alloys has been detected by a torsional oscillating viscometer, and the experimental parameters have been explored. The experimental results indicate that Cu-Zr-Al alloys react with corundum crucibles and are not oxidated easily in the viscometer. In addition, the influence of thermal history on viscosity measurements is not inconsiderable. By eliminating the above factors, an abnormal three-stage trend of viscosity changes is observed finally. Analysis shows that this abnormal dynamic phenomenon probably is attributed to the transition of clusters in different temperature ranges of the glass liquids, and might correspond to the abnormal thermodynamic behavior observed in Cu-Zr-Al liquids.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

781-787

Citation:

Online since:

February 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.N. Hu, Y.Z. Yue, C.Z. Zhang, Abnormal sub-Tg enthalpy relaxation in the CuZrAl metallic glasses far from equilibrium, Appl. Phys. Lett. 98 (2011) 081904.

DOI: 10.1063/1.3556659

Google Scholar

[2] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[3] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng. R 44 (2004) 45-89.

Google Scholar

[4] C.A. Angell, Formation of glasses from liquids and biopolymers, Science 267 (1995) 1924-(1935).

DOI: 10.1126/science.267.5206.1924

Google Scholar

[5] X.F. Bian, B.A. Sun, L.N. Hu et al., Fragility of superheated melts and glass-forming ability in Al-based alloys, Phys. Lett. A 335 (2005) 61-67.

DOI: 10.1016/j.physleta.2004.12.018

Google Scholar

[6] Y. Wu, H. Wang, H.H. Wu et al., Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties, Acta Mater. 59 (2011) 2928-2936.

DOI: 10.1016/j.actamat.2011.01.029

Google Scholar

[7] P. Yu, H.Y. Bai, M.B. Tang et al., Excellent glass-forming ability in simple Cu50Zr50-based alloys, J. Non-Cryst. Solids 351 (2005) 1328-1332.

DOI: 10.1016/j.jnoncrysol.2005.03.012

Google Scholar

[8] Y.Q. Cheng, E. Ma, Indicators of internal structural states for metallic glasses: Local order, free volume, and configurational potential energy, Appl. Phys. Lett. 93 (2008) 051910.

DOI: 10.1063/1.2966154

Google Scholar

[9] W.H. Wang, J.J. Lewandowski, A.L. Greer, Understanding the glass-forming ability of Cu50Zr50 alloys in terms of a metastable eutectic, J. Mater. Res. 20 (2005) 2307-2313.

DOI: 10.1557/jmr.2005.0302

Google Scholar

[10] A. Inoue, W. Zhang, Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys, Mater. Trans. JIM 43 (2002) 2921-2925.

DOI: 10.2320/matertrans.43.2921

Google Scholar

[11] W. Zhang, A. Inoue, High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu–Zr–Ag ternary system, J. Mater. Res. 21 (2006) 234-241.

DOI: 10.1557/jmr.2006.0020

Google Scholar

[12] A. Inoue, W. Zhang, T. Zhang et al., High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems, Acta Mater. 49 (2001) 2645-2652.

DOI: 10.1016/s1359-6454(01)00181-1

Google Scholar

[13] N.S. Barekar, S. Pauly, R.B. Kumar et al., Structure-property relations in bulk metallic Cu-Zr-Al alloys, Mater. Sci. Eng. A 527 (2010) 5867-5872.

DOI: 10.1016/j.msea.2010.05.074

Google Scholar

[14] P. Yu, H.Y. Bai, Poisson's ratio and plasticity in CuZrAl bulk metallic glasses, Mater. Sci. Eng. A 485 (2008) 1-4.

Google Scholar

[15] Y. Yokoyama, T. Ishikawa, J.T. Okada et al., Volume and viscosity of Zr-Cu-Al glass-forming liquid alloys, J. Non-Cryst Solids 355 (2009) 317-322.

DOI: 10.1016/j.jnoncrysol.2008.11.013

Google Scholar

[16] L.J. Cao, J.S. Wang, S.Y. Huang et al. Experimental study on viscosity properties of molten Zr50Cu50 alloy by rotating cylinder method, [OL]. [2009-12-09]. http: /www. paper. edu. cn.

Google Scholar

[17] J.C. Mauro, Y.Z. Yue, A.J. Ellison et al., Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106 (2009) 19780-19784.

DOI: 10.1073/pnas.0911705106

Google Scholar

[18] J. Guo, X.F. Bian, A correlation between superheated liquid fragility and supercooled liquid fragility in La- and Sm-based glass-forming alloys, J. Alloy Compd. 504 (2010) S205-S207.

DOI: 10.1016/j.jallcom.2010.04.015

Google Scholar

[19] S. Pauly, J. Das, N. Mattern et al., Phase formation and thermal stability in Cu-Zr-Ti(Al) metallic glasses, Intermetallics 17 (2009) 453-462.

DOI: 10.1016/j.intermet.2008.12.003

Google Scholar

[20] H.W. Sheng, W.K. Luo, F.M. Alamgir et al., Atomic packing and short-to-medium range order in metallic glasses, Nature 439 (2006) 419-425.

DOI: 10.1038/nature04421

Google Scholar

[21] L. Wang, X.F. Bian, J.T. Liu, Discontinuous structural phase transition of liquid metal and alloys (1), Phys. Lett. A 326 (2004) 429-435.

DOI: 10.1016/j.physleta.2004.04.052

Google Scholar

[22] John J.Z. Li, W.K. Rhim, C.P. Kim et al., Evidence for a liquid–liquid phase transition in metallic fluids observed by electrostatic levitation, Acta Mater. 59 (2011) 2166-2171.

DOI: 10.1016/j.actamat.2010.12.017

Google Scholar