[1]
L.N. Hu, Y.Z. Yue, C.Z. Zhang, Abnormal sub-Tg enthalpy relaxation in the CuZrAl metallic glasses far from equilibrium, Appl. Phys. Lett. 98 (2011) 081904.
DOI: 10.1063/1.3556659
Google Scholar
[2]
A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306.
DOI: 10.1016/s1359-6454(99)00300-6
Google Scholar
[3]
W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng. R 44 (2004) 45-89.
Google Scholar
[4]
C.A. Angell, Formation of glasses from liquids and biopolymers, Science 267 (1995) 1924-(1935).
DOI: 10.1126/science.267.5206.1924
Google Scholar
[5]
X.F. Bian, B.A. Sun, L.N. Hu et al., Fragility of superheated melts and glass-forming ability in Al-based alloys, Phys. Lett. A 335 (2005) 61-67.
DOI: 10.1016/j.physleta.2004.12.018
Google Scholar
[6]
Y. Wu, H. Wang, H.H. Wu et al., Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties, Acta Mater. 59 (2011) 2928-2936.
DOI: 10.1016/j.actamat.2011.01.029
Google Scholar
[7]
P. Yu, H.Y. Bai, M.B. Tang et al., Excellent glass-forming ability in simple Cu50Zr50-based alloys, J. Non-Cryst. Solids 351 (2005) 1328-1332.
DOI: 10.1016/j.jnoncrysol.2005.03.012
Google Scholar
[8]
Y.Q. Cheng, E. Ma, Indicators of internal structural states for metallic glasses: Local order, free volume, and configurational potential energy, Appl. Phys. Lett. 93 (2008) 051910.
DOI: 10.1063/1.2966154
Google Scholar
[9]
W.H. Wang, J.J. Lewandowski, A.L. Greer, Understanding the glass-forming ability of Cu50Zr50 alloys in terms of a metastable eutectic, J. Mater. Res. 20 (2005) 2307-2313.
DOI: 10.1557/jmr.2005.0302
Google Scholar
[10]
A. Inoue, W. Zhang, Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys, Mater. Trans. JIM 43 (2002) 2921-2925.
DOI: 10.2320/matertrans.43.2921
Google Scholar
[11]
W. Zhang, A. Inoue, High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu–Zr–Ag ternary system, J. Mater. Res. 21 (2006) 234-241.
DOI: 10.1557/jmr.2006.0020
Google Scholar
[12]
A. Inoue, W. Zhang, T. Zhang et al., High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems, Acta Mater. 49 (2001) 2645-2652.
DOI: 10.1016/s1359-6454(01)00181-1
Google Scholar
[13]
N.S. Barekar, S. Pauly, R.B. Kumar et al., Structure-property relations in bulk metallic Cu-Zr-Al alloys, Mater. Sci. Eng. A 527 (2010) 5867-5872.
DOI: 10.1016/j.msea.2010.05.074
Google Scholar
[14]
P. Yu, H.Y. Bai, Poisson's ratio and plasticity in CuZrAl bulk metallic glasses, Mater. Sci. Eng. A 485 (2008) 1-4.
Google Scholar
[15]
Y. Yokoyama, T. Ishikawa, J.T. Okada et al., Volume and viscosity of Zr-Cu-Al glass-forming liquid alloys, J. Non-Cryst Solids 355 (2009) 317-322.
DOI: 10.1016/j.jnoncrysol.2008.11.013
Google Scholar
[16]
L.J. Cao, J.S. Wang, S.Y. Huang et al. Experimental study on viscosity properties of molten Zr50Cu50 alloy by rotating cylinder method, [OL]. [2009-12-09]. http: /www. paper. edu. cn.
Google Scholar
[17]
J.C. Mauro, Y.Z. Yue, A.J. Ellison et al., Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106 (2009) 19780-19784.
DOI: 10.1073/pnas.0911705106
Google Scholar
[18]
J. Guo, X.F. Bian, A correlation between superheated liquid fragility and supercooled liquid fragility in La- and Sm-based glass-forming alloys, J. Alloy Compd. 504 (2010) S205-S207.
DOI: 10.1016/j.jallcom.2010.04.015
Google Scholar
[19]
S. Pauly, J. Das, N. Mattern et al., Phase formation and thermal stability in Cu-Zr-Ti(Al) metallic glasses, Intermetallics 17 (2009) 453-462.
DOI: 10.1016/j.intermet.2008.12.003
Google Scholar
[20]
H.W. Sheng, W.K. Luo, F.M. Alamgir et al., Atomic packing and short-to-medium range order in metallic glasses, Nature 439 (2006) 419-425.
DOI: 10.1038/nature04421
Google Scholar
[21]
L. Wang, X.F. Bian, J.T. Liu, Discontinuous structural phase transition of liquid metal and alloys (1), Phys. Lett. A 326 (2004) 429-435.
DOI: 10.1016/j.physleta.2004.04.052
Google Scholar
[22]
John J.Z. Li, W.K. Rhim, C.P. Kim et al., Evidence for a liquid–liquid phase transition in metallic fluids observed by electrostatic levitation, Acta Mater. 59 (2011) 2166-2171.
DOI: 10.1016/j.actamat.2010.12.017
Google Scholar