Diffusion Bonding of Fe-Based Amorphous Ribbon to Crystalline Cu

Article Preview

Abstract:

A copper rod/FeSiB amorphous ribbon/copper rod sandwich laminated composite material has been successfully fabricated by co-pressing at temperatures within supercooled liquid region. The bonding interface has been characterized by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Results showed that a good bonding interface could be obtained only when the initial surface were carefully polished. The diffusion zone confirmed by EDS is about 60nm, indicating the bonding is in atomic metallurgical level via limited diffusion. The present results show that even the diffusion length is very small, diffusion bonding in the supercooled liquid region could be an effective way for fabricating Fe-based metallic glass/Cu laminated composites

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

788-792

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Klement, R. H Willens, et al., Non-crystalline structure in solidified gold-silicon alloys. Nature, 187 (1960) 869-870.

DOI: 10.1038/187869b0

Google Scholar

[2] A. Inoue, A. Takeuchi, et al., Recent development and application products of bulk glassy alloys. Acta Materialia, 59 (2011) 2243-2267.

DOI: 10.1016/j.actamat.2010.11.027

Google Scholar

[3] M.M. Trexler, N.N. Thadhani, et al., Mechanical properties of bulk metallic glasses. Progress in Materials Science, 55 (2010) 759-839.

DOI: 10.1016/j.pmatsci.2010.04.002

Google Scholar

[4] A.I. Salimon, M.F. Ashby, Y. Bréchet, A.L. Greer, Bulk metallic glasses: what are they good for? Materials Science and Engineering A, 375-377 (2004) 385-388.

DOI: 10.1016/j.msea.2003.10.167

Google Scholar

[5] X.L. Fu, Y. Li, C.A. Schuh, Temperature, strain rate and reinforcement volume fraction dependence of plastic deformation in metallic glass matrix composites. Acta Materialia, 55 (2007) 3059-3071.

DOI: 10.1016/j.actamat.2007.01.009

Google Scholar

[6] J. He, H. Li, C. Xing, J. Zhao, Design and preparation of in situ pb-rich particles/al base metallic glass matrix composite. Acta Metallurgica Sinica, 2010 (2010) 41-46.

DOI: 10.3724/sp.j.1037.2009.00489

Google Scholar

[7] J.S.C. Jang, Y.S. Chang, T.H. Li, P.J. Hsieh, J.C. Huang, C.Y.A. Tsao, Plasticity enhancement of Mg58Cu28. 5Gd11Ag2. 5 based bulk metallic glass composites dispersion strengthened by Ti particles. Journal of Alloys and Compounds, 504 (2010).

DOI: 10.1016/j.jallcom.2010.03.030

Google Scholar

[8] D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M. -L. Lind, M.D. Demetriou, W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 451 (2008) 1085-1089.

DOI: 10.1038/nature06598

Google Scholar

[9] J. Schroers, T. Nguyen, G.A. Croopnick, A novel metallic glass composite synthesis method. Scripta Materialia, 56 (2007) 177-180.

DOI: 10.1016/j.scriptamat.2006.08.048

Google Scholar

[10] Y. Kawamura, et al., Liquid phase and supercooled liquid phase welding of bulk metallic glasses. Materials Science and Engineering A, 375-377 (2004) 112-119.

DOI: 10.1016/j.msea.2003.10.097

Google Scholar

[11] Y. Kawamura, et al., Welding technologies of bulk metallic glasses. Journal of Non-Crystalline Solids, 317 (2003) 152-157.

DOI: 10.1016/s0022-3093(02)02005-7

Google Scholar

[12] Y.K. Jonghyun Kim, et al., Dissimilar welding of Zr 41 Be 23 Ti 14 Cu 12 Ni 10 bulk metallic glass and stainless steel. Scripta Materialia, 65 (2011) 1033-1036.

DOI: 10.1016/j.scriptamat.2011.06.032

Google Scholar

[13] Y.J.H. G. Wang, M. Shagiev b,J. Shen, Laser welding ofTi 40 Zr 25 Ni 3 Cu 12 Be 20 bulk metallic glass. Materials Science and Engineering A, 541 (2012).

DOI: 10.1016/j.msea.2012.01.114

Google Scholar

[14] B.L.X. D. Wang, Z.Y. Ma and H.F. Zhang, Friction stir welding of Zr 55 Cu 30 Al 10 Ni 5 bulk metallic glass to Al–Zn–Mg–Cu alloy. Scripta Materialia 60 (2009) 112-115.

DOI: 10.1016/j.scriptamat.2008.09.014

Google Scholar

[15] H. Somekawa, et al., Superplastic and diffusion bonding behavior on Zr–Al–Ni–Cu metallic glass in supercooled liquid region. Scripta Materialia, 50 (2004) 1395-1399.

DOI: 10.1016/j.scriptamat.2004.02.033

Google Scholar

[16] P. Kazanowski, et al., Bi-metal rod extrusion—process and product optimization. Materials Science and Engineering A, 369 (2004) 170-180.

DOI: 10.1016/j.msea.2003.11.002

Google Scholar

[17] K.X. Liu, W.D. Liu, J.T. Wang, H.H. Yan, X.J. Li, Y.J. Huang, X.S. Wei, J. Shen, Atomic-scale bonding of bulk metallic glass to crystalline aluminum. Applied Physics Letters, 93 (2008) 081918.

DOI: 10.1063/1.2976667

Google Scholar

[18] J. Ragani, A. Volland, S. Gravier, J.J. Blandin, M. Suéry, Metallic glass/light alloy (MEGA) multimaterials elaborated by co-pressing at high temperature. Journal of Alloys and Compounds, 495 (2010) 323-326.

DOI: 10.1016/j.jallcom.2009.10.101

Google Scholar

[19] Sébastien Gravier, Sylvain Puech, Jean-Jacques Blandin, a.M. Suéry, New Metallic Glass/Alloy (MeGA) Rods Produced by Co-extrusion. Advanced engineering materials, 8 (2006) 948-954.

DOI: 10.1002/adem.200600139

Google Scholar

[20] Y.R. Zhang, R.V. Ramanujan, et al., A study of the crystallization behavior of an amorphous Fe 77. 5 Si 13. 5 B9 alloy. Materials Science and Engineering A, 416 (2006) 161-168.

DOI: 10.1016/j.msea.2005.10.033

Google Scholar

[21] W. X, YU, YQ, HU, et al., Superplasticity and Application of Superplastic Forming/Diffusion BondingTechnology. Materials Review, 23 (2009) 8-14.

Google Scholar

[22] D.X. T, Y L Zheng, R L Zheng, The calculation of atom interaction potential in metastable FeCu solid solutions. Journal of atomic and molecular physics, 22 (2005) 251-255.

Google Scholar