[1]
W. Klement, R. H Willens, et al., Non-crystalline structure in solidified gold-silicon alloys. Nature, 187 (1960) 869-870.
DOI: 10.1038/187869b0
Google Scholar
[2]
A. Inoue, A. Takeuchi, et al., Recent development and application products of bulk glassy alloys. Acta Materialia, 59 (2011) 2243-2267.
DOI: 10.1016/j.actamat.2010.11.027
Google Scholar
[3]
M.M. Trexler, N.N. Thadhani, et al., Mechanical properties of bulk metallic glasses. Progress in Materials Science, 55 (2010) 759-839.
DOI: 10.1016/j.pmatsci.2010.04.002
Google Scholar
[4]
A.I. Salimon, M.F. Ashby, Y. Bréchet, A.L. Greer, Bulk metallic glasses: what are they good for? Materials Science and Engineering A, 375-377 (2004) 385-388.
DOI: 10.1016/j.msea.2003.10.167
Google Scholar
[5]
X.L. Fu, Y. Li, C.A. Schuh, Temperature, strain rate and reinforcement volume fraction dependence of plastic deformation in metallic glass matrix composites. Acta Materialia, 55 (2007) 3059-3071.
DOI: 10.1016/j.actamat.2007.01.009
Google Scholar
[6]
J. He, H. Li, C. Xing, J. Zhao, Design and preparation of in situ pb-rich particles/al base metallic glass matrix composite. Acta Metallurgica Sinica, 2010 (2010) 41-46.
DOI: 10.3724/sp.j.1037.2009.00489
Google Scholar
[7]
J.S.C. Jang, Y.S. Chang, T.H. Li, P.J. Hsieh, J.C. Huang, C.Y.A. Tsao, Plasticity enhancement of Mg58Cu28. 5Gd11Ag2. 5 based bulk metallic glass composites dispersion strengthened by Ti particles. Journal of Alloys and Compounds, 504 (2010).
DOI: 10.1016/j.jallcom.2010.03.030
Google Scholar
[8]
D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M. -L. Lind, M.D. Demetriou, W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 451 (2008) 1085-1089.
DOI: 10.1038/nature06598
Google Scholar
[9]
J. Schroers, T. Nguyen, G.A. Croopnick, A novel metallic glass composite synthesis method. Scripta Materialia, 56 (2007) 177-180.
DOI: 10.1016/j.scriptamat.2006.08.048
Google Scholar
[10]
Y. Kawamura, et al., Liquid phase and supercooled liquid phase welding of bulk metallic glasses. Materials Science and Engineering A, 375-377 (2004) 112-119.
DOI: 10.1016/j.msea.2003.10.097
Google Scholar
[11]
Y. Kawamura, et al., Welding technologies of bulk metallic glasses. Journal of Non-Crystalline Solids, 317 (2003) 152-157.
DOI: 10.1016/s0022-3093(02)02005-7
Google Scholar
[12]
Y.K. Jonghyun Kim, et al., Dissimilar welding of Zr 41 Be 23 Ti 14 Cu 12 Ni 10 bulk metallic glass and stainless steel. Scripta Materialia, 65 (2011) 1033-1036.
DOI: 10.1016/j.scriptamat.2011.06.032
Google Scholar
[13]
Y.J.H. G. Wang, M. Shagiev b,J. Shen, Laser welding ofTi 40 Zr 25 Ni 3 Cu 12 Be 20 bulk metallic glass. Materials Science and Engineering A, 541 (2012).
DOI: 10.1016/j.msea.2012.01.114
Google Scholar
[14]
B.L.X. D. Wang, Z.Y. Ma and H.F. Zhang, Friction stir welding of Zr 55 Cu 30 Al 10 Ni 5 bulk metallic glass to Al–Zn–Mg–Cu alloy. Scripta Materialia 60 (2009) 112-115.
DOI: 10.1016/j.scriptamat.2008.09.014
Google Scholar
[15]
H. Somekawa, et al., Superplastic and diffusion bonding behavior on Zr–Al–Ni–Cu metallic glass in supercooled liquid region. Scripta Materialia, 50 (2004) 1395-1399.
DOI: 10.1016/j.scriptamat.2004.02.033
Google Scholar
[16]
P. Kazanowski, et al., Bi-metal rod extrusion—process and product optimization. Materials Science and Engineering A, 369 (2004) 170-180.
DOI: 10.1016/j.msea.2003.11.002
Google Scholar
[17]
K.X. Liu, W.D. Liu, J.T. Wang, H.H. Yan, X.J. Li, Y.J. Huang, X.S. Wei, J. Shen, Atomic-scale bonding of bulk metallic glass to crystalline aluminum. Applied Physics Letters, 93 (2008) 081918.
DOI: 10.1063/1.2976667
Google Scholar
[18]
J. Ragani, A. Volland, S. Gravier, J.J. Blandin, M. Suéry, Metallic glass/light alloy (MEGA) multimaterials elaborated by co-pressing at high temperature. Journal of Alloys and Compounds, 495 (2010) 323-326.
DOI: 10.1016/j.jallcom.2009.10.101
Google Scholar
[19]
Sébastien Gravier, Sylvain Puech, Jean-Jacques Blandin, a.M. Suéry, New Metallic Glass/Alloy (MeGA) Rods Produced by Co-extrusion. Advanced engineering materials, 8 (2006) 948-954.
DOI: 10.1002/adem.200600139
Google Scholar
[20]
Y.R. Zhang, R.V. Ramanujan, et al., A study of the crystallization behavior of an amorphous Fe 77. 5 Si 13. 5 B9 alloy. Materials Science and Engineering A, 416 (2006) 161-168.
DOI: 10.1016/j.msea.2005.10.033
Google Scholar
[21]
W. X, YU, YQ, HU, et al., Superplasticity and Application of Superplastic Forming/Diffusion BondingTechnology. Materials Review, 23 (2009) 8-14.
Google Scholar
[22]
D.X. T, Y L Zheng, R L Zheng, The calculation of atom interaction potential in metastable FeCu solid solutions. Journal of atomic and molecular physics, 22 (2005) 251-255.
Google Scholar