[1]
B.X. Liu, W.L. Johnson, M.A. Nicolet and S.S. Lau, Structural difference rule for amorphous alloy formation by ion mixing, Appl. Phys. Lett. 42(1983) 45-47.
DOI: 10.1063/1.93767
Google Scholar
[2]
R.B. Schwarz and W.L. Johnson, Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals, Phys. Rev. Lett. 51(1983) 415-418.
DOI: 10.1103/physrevlett.51.415
Google Scholar
[3]
C.C. Koch, O.B. Cavin, C.G. Mckamey and J.O. Scarborough, Preparation of ' amorphous', Ni60Nb40 by mechanical alloying, Appl. Phys. Lett. 43(1983) 1017-1020.
Google Scholar
[4]
B.X. Liu, W.S. Lai and Q. Zhang, Irradiation induced amorphization in metallic multilayers and calculation of glass-forming ability from atomistic potential in the binary metal systems. Mater. Sci. Eng. 29 (2000) 1-48.
DOI: 10.1016/s0927-796x(00)00016-4
Google Scholar
[5]
Z.P. Lu, H. Bei and C.T. Liu, Recent progress in quantifying glass-forming ability of bulk metallic glasses. Intermetallics 15(2007) 618-624.
DOI: 10.1016/j.intermet.2006.10.017
Google Scholar
[6]
A. Inoue, T Zhang and A. Takeuchi, Ferrous and Nonferrous Bulk Amorphous Alloys, Mater. Sci. Forum. 269-272(1998) 855-864.
DOI: 10.4028/www.scientific.net/msf.269-272.855
Google Scholar
[7]
W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology, Mat. Res. Bull. 24(1999) 42-56.
DOI: 10.1557/s0883769400053252
Google Scholar
[8]
T. Egami and Y. Waseda, Atomic size effection on the formation of metallic glasses. J. Non-Cryst. Solids. 64(1984) 113-134.
DOI: 10.1016/0022-3093(84)90210-2
Google Scholar
[9]
F. R. De Boer, R. Boom, W. C. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metal Alloys, North-Holland, Amsterdam, (1988).
Google Scholar
[10]
S.H. Liang, J.H. Li and B.X. Liu, Solid-State Amorphization Observed in the Cu–Zr System by Molecular Dynamics Simulation, J. Phys. Soc. Jpn 77(2008) 104301.
DOI: 10.1143/jpsj.77.104301
Google Scholar
[11]
S.H. Liang, J.H. Li and B.X. Liu, Solid-state amorphization of an immiscible Nb-Zr system simulated by molecular dynamics, Comp. Mater. Sci. 42(2008) 550-557.
DOI: 10.1016/j.commatsci.2007.09.002
Google Scholar
[12]
T.L. Wang, J.H. Li, K.P. Tai and B.X. Liu, Formation of amorphous phases in an immiscible Cu-Nb system studied by molecular dynamics simulation and ion beam mixing, Scripta. Mater. 57(2007) 157-160.
DOI: 10.1016/j.scriptamat.2007.03.006
Google Scholar
[13]
R. Bormann, F. Gartner and K. Zoltzer, Application of the CALPHAD method for the prediction of amorphous phase formation, J. Less. Common. Met. 145(1988), 19-29.
DOI: 10.1016/0022-5088(88)90258-5
Google Scholar
[14]
L. J. Gallego, J. A. Somoza, H.M. Fernandez and J.A. Alonso, Prediction of Glass Formation by Solid State Reaction in Alloys, J. Phys. 51(1990) 111-117.
DOI: 10.1051/jphyscol:1990413
Google Scholar
[15]
H. Bakker, Enthalpies in Alloys: Miedema's Semiempirical Model, Trans Tech Publications, Zurich, (1998).
Google Scholar
[16]
M. Baricco and M. Palumbo, Special Issue: Bulk Metallic Glasses, Adv. Eng. Mater. 9(2007) 454-467.
Google Scholar
[17]
J. A. Alonso and J.M. Lopez, Glass-forming ability in binary alloys produced by ion beam mixing and by laser quenching, Mater. Lett. 4(1986) 316-319.
DOI: 10.1016/0167-577x(86)90033-9
Google Scholar
[18]
T.L. Wang and B.X. Liu, Glass forming ability of the Fe-Zr-Cu system studied by thermodynamic calculation and ion beam mixing. J. Alloy. Compd. 481(2009) 156-160.
DOI: 10.1016/j.jallcom.2009.02.138
Google Scholar
[19]
J.F. Ziegler, J.P. Biersack and U Littmark, The Stopping and Range of Ions in Solids, Pergamon Press, New York, (1992).
Google Scholar
[20]
Schwarz and Johnson, Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals, Phys. Rev. Lett. 51(1983) 415-418.
DOI: 10.1103/physrevlett.51.415
Google Scholar