[1]
T. M. Wang, Z.N. Chen, H.W. Fu, J. Xu, Y. Fu and T.J. Li, Grain refining potency of Al-B master alloy on pure aluminum, Scr Mater. 64 (2011) 1121-1124.
DOI: 10.1016/j.scriptamat.2011.03.001
Google Scholar
[2]
R.D. Noebe, R.R. Bowman, M.V. Nathal, Physical and Mechanical-properties of the B2 Compound NiAl, Int Mater Rev. 38-4 (1993) 193.
DOI: 10.1179/imr.1993.38.4.193
Google Scholar
[3]
K.H. Huang: Master's Thesis, National Tsing Hua University, Hsinchu, Taiwan, June (1996).
Google Scholar
[4]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv Eng Mater. 31-6 (2004) 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[5]
Y.J. Zhou, Y. Zhang, Y.L. Wang and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl Phys Lett. 90 (2007) 181904.
DOI: 10.1063/1.2734517
Google Scholar
[6]
A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Mater Sci Eng A. 533 (2012) 107-118.
DOI: 10.1016/j.msea.2011.11.045
Google Scholar
[7]
M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh. Microstructure and wear behavior of AlxCo1. 5CrFeNi1. 5Tiy high-entropy alloys, Acta Mater. 59 (2011) 6308-6317.
DOI: 10.1016/j.actamat.2011.06.041
Google Scholar
[8]
B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai and M. X. Wang. Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution, Mater Corros. 62 (2011) 9999.
DOI: 10.1002/maco.201106072
Google Scholar
[9]
C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, et al., Mechanical Performance of the AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall Mater Trans A. 36 (2005) 1263-1271.
DOI: 10.1007/s11661-005-0218-9
Google Scholar
[10]
O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J Mater Sci. 47 (2012) 4062-4074.
DOI: 10.1007/s10853-012-6260-2
Google Scholar
[11]
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen and P. K. Liaw. Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv Eng Mater. 10 (2008) No. 6.
DOI: 10.1002/adem.200700240
Google Scholar
[12]
X. Yang, Y. Zhang. Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater Chem Phys. (2011), doi: 10. 1016/j. matchemphys. 2011. 11. 021.
Google Scholar
[13]
S. Guo, C.T. Liu. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog Nat Sci: Materials International. 21 (2011) 433-446.
DOI: 10.1016/s1002-0071(12)60080-x
Google Scholar
[14]
Y. Zhang, X. Yang and P. K. Liaw. Alloy Design and Properties Optimization of High-Entropy Alloys, JOM. 64 No. 7 (2012) 830-838.
DOI: 10.1007/s11837-012-0366-5
Google Scholar
[15]
J.T. Guo, Ordered Intermetallic Compound NiAl Alloy, www. sciencep. com, China, (2003).
Google Scholar