Tailoring Microstructures and Mechanical Properties of AlCoCrFeNiTi0.3 High-Entropy Alloys by Heat Treatment

Article Preview

Abstract:

The microstructures and mechanical properties of AlCoCrFeNi0.3 high-entropy alloys (HEAs) are tailored through heat treatment. During heat treatment, the dendrite phase with a body-centered-cubic (bcc) structure transformed into the interdendrite phase with a bcc structure. Due to the element accumulation with higher hardness in the interdendrites and the increase of volume fraction of interdendrites, the average hardness of AlCoCrFeNi0.3 HEAs increased with the heat-treatment temperature, and the highest hardness was 625 HV. After 500 heat treatment, the optimized mechanical properties under quasi-static compression were achieved, and the yielding strength and fracture plasticity were 2.30 GPa and 9 %, respectively. Upon dynamic loading, the mechanical properties of HEAs were greatly enhanced.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

768-774

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Super plastic bulk metallic glasses at room temperature, Science. 315 (2007)1385-1388.

DOI: 10.1126/science.1136726

Google Scholar

[2] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett. 90 (2007) 181904 1-3.

DOI: 10.1063/1.2734517

Google Scholar

[3] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004)299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[4] J.W. Qiao, S. Wang, Y. Zhang, P.K. Liaw, G.L. Chen, Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification, Appl. Phys. Lett. 94 (2009)151905-151905.

DOI: 10.1063/1.3118587

Google Scholar

[5] X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics. 15 (2007) 357-362.

DOI: 10.1016/j.intermet.2006.08.005

Google Scholar

[6] Y.J. Zhou, Y. Zhang, F.J. Wang, Y.L. Wang, and G.L. Chen, Effect of Cu addition on the microstructure and mechanical properties of AlCoCrFeNiTi0. 5 solid-solution alloy, J. Alloys Compds. 466 (2008) 201-204.

DOI: 10.1016/j.jallcom.2007.11.110

Google Scholar

[7] B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, and H.Z. Fu, Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy, Mater. Sci. Eng. A. 498 (2008) 482-486.

DOI: 10.1016/j.msea.2008.08.025

Google Scholar

[8] K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Mater. Sci. Eng. A. 508 (2009) 214-219.

DOI: 10.1016/j.msea.2008.12.053

Google Scholar

[9] F.J. Wang and Y. Zhang, Effect of Co addition on crystal structure and mechanical properties of Ti0. 5CrFeNiAlCo high entropy alloy, Mater. Sci. Eng. A. 496 (2008) 214-216.

DOI: 10.1016/j.msea.2008.05.020

Google Scholar

[10] Y. Zhang, S.G. Ma, and J.W. Qiao, Morphology Transition from Dendrites to Equiaxed Grains for AlCoCrFeNi High-Entropy Alloys by Copper Mold Casting and Bridgman Solidification. Metall. Mater. Trans. A. 43 (2012) 2625-2630.

DOI: 10.1007/s11661-011-0981-8

Google Scholar

[11] R.W. Armstrong and S.M. Walley, High strain rate properties of metals and alloys, Int. Mater. Rev. 53 (2008) 105-128.

Google Scholar

[12] Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy, Mater. Sci. Eng. A. 491 (2008) 154-158.

DOI: 10.1016/j.msea.2008.01.064

Google Scholar

[13] J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, and P.K. Liaw, Y. Zhang, Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures, Mater. Sci. Forum. 688 (2011) 419-425.

DOI: 10.4028/www.scientific.net/msf.688.419

Google Scholar

[14] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (2008) 534-538.

DOI: 10.1002/adem.200700240

Google Scholar

[15] Kittel C. Int. to Solid State Phys. 6th ed., John Wiley & Songs, Inc., New York, NY, 1980, 26.

Google Scholar

[16] C.Y. Hsu, C.C. Juan, W.R. Wang, T.S. Sheu, J.W. Yeh, and S.K. Chen, On the superior hot hardness and softening resistance of AlCoCrxFeMo0. 5Ni high-entropy alloys. Mater. Sci. Eng A. 528 (2011) 3581-3588.

DOI: 10.1016/j.msea.2011.01.072

Google Scholar

[17] C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A. 36 (2005) 881-893.

DOI: 10.1007/s11661-005-0283-0

Google Scholar

[18] R.O. Ritchie, The conflicts between strength and toughness, Nat. Mater. 10 (2011) 817-822.

Google Scholar

[19] J.W. Qiao, P. Feng, Y. Zhang, Q.M. Zhang, P.K. Liaw, G.L. Chen. Quasi-static and dynamic deformation behaviors of in-situ Zr-based bulk metallic glass matrix composites, J. Mater. Res. 25 (2010) 2264-2270.

DOI: 10.1557/jmr.2010.0289

Google Scholar