Deformation Micromechanisms of a Ti-Based Metallic Glass Composite with Excellent Mechanical Properties

Article Preview

Abstract:

A Ti-based metallic glass composite with composition of Ti48Zr20Nb12Cu5Be15 exhibits good ambient plasticity in tensile and compressive loading. The macro and micro mechanisms during deformation have been investigated systematically. Obvious asymmetry between the tensile and compressive properties of the composite has been observed, indicating amorphous matrix effect on the metallic glass composite. The micro fracture mechanism of dendrites in compression can also be attributed to two mechanisms: shear induced fracture in major and tension induced fracture in local, revealing a constraint of matrix induced complex stress state in composite. Pile-ups of dislocations in dendrites cause work-hardening of composite, and the impedance of dendrites to shear bands is responsible for the improvement of plastic strain.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

809-814

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta. Mater. 48 (2000) 279-306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[2] J.F. Loffler, Bulk metallic glasses, Intermetallics. 11 (2003) 529-540.

Google Scholar

[3] M.F. Ashby, A.L. Greer, Metallic glasses as structural materials, Scri. Mater. 54 (2006) 321-326.

Google Scholar

[4] M.K. Miller, P.K. Liaw, Bulk metallic glasses, Springer, New York, (2007).

Google Scholar

[5] A. Peker, W. Johnson, A highly processable metallic glass: Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5, Appl. Phys. Lett. 63 (1993) 2342-2344.

Google Scholar

[6] F. Szuecs, C.P. Kim, W.L. Johnson, Mechanical properties of Zr56. 2Ti13. 8Nb5. 0Cu6. 9Ni5. 6Be12. 5 ductile phase reinforced bulk metallic glass composite, Acta. Mater. 49 (2001) 1507-1513.

DOI: 10.1016/s1359-6454(01)00068-4

Google Scholar

[7] J.L. Cheng, G. Chen, F. Xu, Y.L. Du, Y.S. Li, C.T. Liu, Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites, Intermetallics. 18 (2010) 2425-2430.

DOI: 10.1016/j.intermet.2010.08.040

Google Scholar

[8] J.W. Qiao, J.T. Zhang, F. Jiang, Y. Zhang, P.K. Liaw, Y. Ren, etal., Development of plastic Ti-based bulk-metallic-glass-matrix composites by controlling the microstructures, Mater. Sci. Eng. A. 527 (2010) 7752-7756.

DOI: 10.1016/j.msea.2010.08.055

Google Scholar

[9] H. Ma, J. Xu, E. Ma, Mg-based bulk metallic glass composites with plasticity and high strength, Appl. Phys. Lett. 83 (2003) 2793-2795.

DOI: 10.1063/1.1616192

Google Scholar

[10] M.L. Lee, Y. Li, C.A. Schuh, Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites, Acta. Mater. 52 (2004) 4121-4131.

DOI: 10.1016/j.actamat.2004.05.025

Google Scholar

[11] J.W. Qiao, Y. Zhang, H.L. Jia, H.J. Yang, P.K. Liaw, B.S. Xu, Tensile softening of metallic- glass-matrix composites in the supercooled liquid region, Appl. Phys. Lett. 100 (2012) 121902.

DOI: 10.1063/1.3696026

Google Scholar

[12] D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, etal., Designing metallic glass matrix composites with high toughness and tensile ductility, Nature. 451 (2008) 1085-1089.

DOI: 10.1038/nature06598

Google Scholar

[13] X.S. Xiao, S.S. Fang, L. Xia, W.H. Li, H. Qin, Y.D. Dong, et al., Influence of beryllium on thermal stability and glass-forming ability of Zr–Al–Ni–Cu bulk amorphous alloys, J. Alloys. Compd, 351 (2003) 324-328.

DOI: 10.1016/j.jallcom.2004.01.014

Google Scholar

[14] A. Peker, W.L. Johnson, A highly processable metallic glass: ZrTiCuNiBe, Appl. Phys. Lett. 63 (1993) 2342.

Google Scholar

[15] Y. Zhang, W. Xu, H. Tan, Y. Li, Microstructure control and ductility improvement of La-Al-(Cu, Ni) composites by Bridgman solidification, Acta. Mater. 53 (2005) 2607-2616.

DOI: 10.1016/j.actamat.2005.02.020

Google Scholar

[16] Z.F. Zhang, J. Eckert, L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta. Mater. 51 (2003) 1167-1179.

DOI: 10.1016/s1359-6454(02)00521-9

Google Scholar

[17] J.W. Qiao, A.C. Sun, E.W. Huang, Y. Zhang, P.K. Liaw, C.P. Chuang, Tensile deformation micromechanisms for bulk metallic glass matrix composites: From work-hardening to softening, Acta. Mater. 59 (2011) 4126-4137.

DOI: 10.1016/j.actamat.2011.03.036

Google Scholar

[18] V.V. Bulatov, O. Richmond, M.V. Glazov, An atomistic dislocation mechanism of pressure-dependent plastic flow in aluminum, Acta. Mater. 47 (1999) 3507-3514.

DOI: 10.1016/s1359-6454(99)00154-8

Google Scholar

[19] F.F. Wu, Z.F. Zhang, S. Mao, A. Peker, J. Eckert, Effect of annealing on the mechanical properties and fracture mechanisms of a Zr56. 2Ti13. 8Nb5. 0Cu6. 9Ni5. 6Be12. 5 bulk-metallic-glass composite, Physical. Review. B. 75 (2007) 134201.

Google Scholar

[20] Z.P. Lu, H. Bei, Y. Wu, G.L. Chen, E.P. George, C.T. Liu, Oxygen effects on plastic deformation of a Zr-based bulk metallic glass, Appl. Phys. Lett. 92 (2008) 011915.

DOI: 10.1063/1.2828981

Google Scholar

[21] J.W. Qiao, Y. Zhang, P.K. Liaw, Tailoring Microstructures and Mechanical Properties of Zr-Based Bulk Metallic Glass Matrix Composites by the Bridgman Solidification, Adv. Eng. Mater. 10 (2008) 1039-1042.

DOI: 10.1002/adem.200800149

Google Scholar

[22] J.W. Qiao, Y. Zhang, P.K. Liaw, G.L. Chen, Micromechanisms of plastic deformation of a dendrite/Zr-based bulk-metallic-glass composite, Scri. Mater. 61 (2009) 1087-1090.

DOI: 10.1016/j.scriptamat.2009.08.044

Google Scholar

[23] K.B. Kim, J. Das, F. Baier, J. Eckert, Propagation of shear bands in Ti66. 1Cu8Ni4. 8Sn7. 2Nb13. 9 nanostructure-dendrite composite during deformation, Appl. Phys. Lett. 86 (2005) 171909.

DOI: 10.1063/1.1920424

Google Scholar