[1]
T. Godfrey, P.S. Goodwin, C.M. Ward-Close, Titanium particulate metal matrix composites- reinforcement, production methods, and mechanical properties, Adv. Eng. Mater. 2 (2000) 85-92.
DOI: 10.1002/(sici)1527-2648(200003)2:3<85::aid-adem85>3.0.co;2-u
Google Scholar
[2]
C.H. Weber, Z.Z. Du, F.W. Zoky, High temperature deformation and fracture of a fiber reinforced titanium matrix composite, Acta. Mater. 44 (1996) 683-695.
DOI: 10.1016/1359-6454(95)00208-1
Google Scholar
[3]
S.C. Tjong, Y.W. Mai, Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites, Compos. Sci. Technol. 68 (2008) 583-560.
DOI: 10.1016/j.compscitech.2007.07.016
Google Scholar
[4]
L.J. Huang, L. Geng, H.X. Peng, In situ (TiBw + TiCp)/Ti6Al4V composites with a network reinforcement distribution, Mater. Sci. Eng. A527 (2010) 6723-6727.
DOI: 10.1016/j.msea.2010.07.025
Google Scholar
[5]
C.F. Yolton, The pre-alloyed powder metallurgy of titanium with boron and carbon additions, JOM. 56 (2004) 56-59.
DOI: 10.1007/s11837-004-0130-6
Google Scholar
[6]
W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori, Microstructure and tensile properties of in situ (TiB+TiC)/Ti6242 (TiB: TiC=1: 1) composites prepared by common casting technique, Mater. Sci. Eng. A311 (2001) 142-150.
DOI: 10.1016/s0921-5093(01)00910-8
Google Scholar
[7]
B.V. Radhakrishna, J. Subramanyam, V.V. Bhanu, Preparation of Ti-TiB-TiC & Ti-TiB composites by in-situ reaction hot pressing, Mater. Sci. Eng. A325 (2002) 126-130.
DOI: 10.1016/s0921-5093(01)01412-5
Google Scholar
[8]
S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater Sci Eng. R29 (2000) 49-113.
Google Scholar
[9]
H.T. Tsang, C.G. Chao, C.Y. Ma, Effects of volume fraction of reinforcement on tensile and creep properties of in-situ TiB/Ti MMC, Scripta. Mater. 37 (1997) 1359-1365.
DOI: 10.1016/s1359-6462(97)00251-0
Google Scholar
[10]
M.M. Wang, W.J. Lu, J.N. Qin, et al., Effect of volume fraction of reinforcement on room temperature tensile property of in situ (TiB + TiC)/Ti matrix composites, Mater. Des. 27 (2006) 494-498.
DOI: 10.1016/j.matdes.2004.11.030
Google Scholar
[11]
O.M. Ivasishin, R.V. Teliovych, V.G. Ivanchenko, S. Tamirisakandala, et al., Processing, microstructure, texture, and tensile properties of the Ti-6Al-4V-1. 55B eutectic alloy, Metall. Mater. Trans. A39 (2008) 402-416.
DOI: 10.1007/s11661-007-9425-x
Google Scholar
[12]
X.N. Zhang, W.J. Lu, D. Zhang, et al., In situ technique for synthesizing (TiB+TiC)/Ti composites, Scripta. Mater. 41 (1999) 39-46.
DOI: 10.1016/s1359-6462(99)00087-1
Google Scholar
[13]
S. Tamirisakandala, R.B. Bhat, J.S. Tiley, D.B. Miracle, Grain refinement of cast titanium alloys via trace boron addition, Scripta Mater, 53 (2005) 1421-1426.
DOI: 10.1016/j.scriptamat.2005.08.020
Google Scholar
[14]
V.K. Chandravanshi, R. Sarkar, P. Ghosal, et al., Effect of minor additions of boron on microstructure and mechanical properties of as-cast near α titanium alloy, Metall. Mater. Trans. A41 (2010) 936-946.
DOI: 10.1007/s11661-009-0155-0
Google Scholar
[15]
M.J. Bermingham, S.D. McDonald, K. Nogita, D.H. St. John, et al., Effects of boron on microstructure in cast titanium alloys, Scripta Mater. 59 (2008) 538-541.
DOI: 10.1016/j.scriptamat.2008.05.002
Google Scholar
[16]
H.Z. Ye, X. Y Liu, Review of recent studies in magnesium matrix composites, J. Mater. Sci. 39 (2004) 6153-6171.
Google Scholar
[17]
G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys, Mater Sci Eng. A243 (1998) 32-45.
Google Scholar