Effect of Nb on the Properties of Ti-Nb Random Alloys from First-Principles

Article Preview

Abstract:

The effect of Nb on the equilibrium lattice parameters and relative stability between β and ω phases of Ti1-xNbx (0 < x 0.4) random alloys as well as their mechanical properties in body-centered-cubic crystallographic phase was investigated using the exact muffin-tin orbitals method in combination with the coherent potential approximation. It has been found that the calculated lattice parameters of the β phase agree well with the experimental data. For ω phase, the value of a increases almost linearly with increasing Nb concentration, while the opposite situation presented for c/a. Both Nb addition and increasing temperature enhanced the stability of β phase relative to ω phase. The critical Nb concentration for the complete stabilization of β phase at 300 K, 673 K and 1273 K was 22 at.%, 17 at.% and 9 at.%, respectively. The polycrystalline bulk modulus B, Youngs modulus E and shear modulus G increased monotonously with Nb addition and reducing the Nb concentration below 30 at.% resulted in lower E compared to that of Ti-6Al-4V. The calculated G/B values demonstrate that the bcc Ti1-xNbx (0 < x 0.4) random alloys should be intrinsically ductile.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 747-748)

Pages:

890-898

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering: A. 243(1998)231-236.

DOI: 10.1016/s0921-5093(97)00806-x

Google Scholar

[2] K. Wang, The use of titanium for medical applications in the USA, Materials Science and Engineering: A. 213(1996)134-137.

Google Scholar

[3] H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications, Materials Science and Engineering: C. 26(2006)1269-1277.

DOI: 10.1016/j.msec.2005.08.032

Google Scholar

[4] M. Long, H.J. Rack, Titanium alloys in total joint replacement-a materials science perspective, Biomaterials. 19(1998)1621-1639.

DOI: 10.1016/s0142-9612(97)00146-4

Google Scholar

[5] M. Niinomi, Recent metallic materials for biomedical applications, Metallurgical and Materials Transactions A. 33(2002)477-486.

DOI: 10.1007/s11661-002-0109-2

Google Scholar

[6] Y.L. Hao, S.J. Li, B.B. Sun, M.L. Sui, R. Yang, Ductile Titanium Alloy with Low Poisson's Ratio, Physical Review Letters. 98(2007)216405.

DOI: 10.1103/physrevlett.98.216405

Google Scholar

[7] L.M. Elias, S.G. Schneider, S. Schneider, H.M. Silva, E. Malvisi, Microstructural and mechanical characterization of biomedical Ti-Nb-Zr(-Ta) alloys, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing . 432(2006).

DOI: 10.1016/j.msea.2006.06.013

Google Scholar

[8] Y. Al-Zain, H.Y. Kim, H. Hosoda, T.H. Nam, S. Miyazaki, Shape memory properties of Ti-Nb-Mo biomedical alloys, Acta Materialia 58(2010)4212-4223.

DOI: 10.1016/j.actamat.2010.04.013

Google Scholar

[9] Y.J. Bai, Y.B. Wang, Y. Cheng, F. Deng, Y.F. Zheng, S.C. Wei, Comparative study on the corrosion behavior of Ti-Nb and TMA alloys for dental application in various artificial solutions, Materials Science & Engineering C-Materials for Biological Applications . 31(2011).

DOI: 10.1016/j.msec.2010.12.010

Google Scholar

[10] Y.F. Zheng, B.L. Wang, J.G. Wang, C. Li, L.C. Zhao, Corrosion behaviour of Ti-Nb-Sn shape memory alloys in different simulated body solutions, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 438(2006).

DOI: 10.1016/j.msea.2006.01.131

Google Scholar

[11] K. Miura, N. Yamada, S. Hanada, T.K. Jung, E. Itoi, The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young's modulus, Acta Biomaterialia. 7(2011)2320-2326.

DOI: 10.1016/j.actbio.2011.02.008

Google Scholar

[12] B.L. Wang, L. Li, Y.F. Zheng, In vitro cytotoxicity and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys, Biomedical Materials. 5(2010)044102.

DOI: 10.1088/1748-6041/5/4/044102

Google Scholar

[13] H.Y. Kim, H. Satoru, J.I. Kim, H. Hosoda, S. Miyazaki, Mechanical properties and shape memory behavior of ti-nb alloys, Materials Transactions. 45(2004)2443-2448.

DOI: 10.2320/matertrans.45.2443

Google Scholar

[14] S.A. Souza, R.B. Manicardi, P.L. Ferrandini, C.R.M. Afonso, A.J. Ramirez, R. Caram, Effect of the addition of Ta on microstructure and properties of Ti–Nb alloys, Journal of Alloys and Compounds. 504(2010)330-340.

DOI: 10.1016/j.jallcom.2010.05.134

Google Scholar

[15] P.J.S. Buenconsejo, H.Y. Kim, H. Hosoda, S. Miyazaki, Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy, Acta Materialia. 57(2009)1068-1077.

DOI: 10.1016/j.actamat.2008.10.041

Google Scholar

[16] P.J.S. Buenconsejo, H.Y. Kim, S. Miyazaki, Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys, Acta Materialia. 57(2009)2509-2515.

DOI: 10.1016/j.actamat.2009.02.007

Google Scholar

[17] D. Raabe, B. Sander, M. Friák, D. Ma, J. Neugebauer, Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: Theory and experiments, Acta Materialia. 55(2007)4475-4487.

DOI: 10.1016/j.actamat.2007.04.024

Google Scholar

[18] H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, T. Saito. First-principles calculations for development of low elastic modulus Ti alloys, Physical Review B. 70(2004)174113.

DOI: 10.1103/physrevb.70.174113

Google Scholar

[19] Y. Qiang, S. Jian, X. Hui, G. Wen-yuan, Influence of Nb and Mo contents on phase stability and elastic property of β-type Ti-X alloys, Transactions of Nonferrous Metals Society of China. 17(2007)1417-1421.

DOI: 10.1016/s1003-6326(07)60287-8

Google Scholar

[20] L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications. London: Springer-Verlag, (2007).

Google Scholar

[21] L. Vitos, I.A. Abrikosov, B. Johansson, Anisotropic Lattice Distortions in Random Alloys from First-Principles Theory, Physical Review Letters . 87(2001)156401.

DOI: 10.1103/physrevlett.87.156401

Google Scholar

[22] O.K. Andersen, O. Jepsen, G. Krier. Exact Muffin-Tin Orbital Theory. In: V. Kumar, O.K. Andersen, A. Mookerjee, editors. Lectures on Methods of Electronic Structure Calculations. Singapore: World Scientific Publishing Co., 1994. p.63.

DOI: 10.1142/9789814503778_0003

Google Scholar

[23] L. Vitos, Total-energy method based on the exact muffin-tin orbitals theory, Physical Review B. 64(2001)014107.

DOI: 10.1103/physrevb.64.014107

Google Scholar

[24] G. Grimvall, Thermophysical Properties of Materials, Amsterdam: North-Holland, (1999).

Google Scholar

[25] P. Söderlind, L. Nordström, Y. Lou, B. Johansson. Relativistic effects on the thermal expansion of the actinide elements, Physical Review B. 42(1990)4544-4552.

DOI: 10.1103/physrevb.42.4544

Google Scholar

[26] J. Friedel, Stability of the body centred cubic phase in metals at high temperatures, Journal de Physique Lettres. 35(1974)L59-L63.

DOI: 10.1051/jphyslet:0197400350405900

Google Scholar

[27] C. Kittel, Introduction to Solid State Physics. New York: John-Wiley & Sons, Inc., 1996. p.23.

Google Scholar

[28] D.I. Bolef, Elastic Constants of Single Crystals of the bcc Transition Elements V, Nb, and Ta, Journal of Applied Physics. 32(1961)100-105.

DOI: 10.1063/1.1735933

Google Scholar

[29] S. Allard, editor Metals, Thermal and Mechanical Data. New York: Pergamon Press, (1969).

Google Scholar

[30] A.V. Dobromyslov, V.A. Elkin, Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4–6 periods, Scripta Materialia 44(2001)905-910.

DOI: 10.1016/s1359-6462(00)00694-1

Google Scholar

[31] Y. Hariharan, M.P. Janawadkar, T.S. Radhakrishnan, A.L.E. Terrance, G.A. Dixit, V.S. Raghunathan, Structure property correlations in superconducting Ti-Nb alloys, Pramana 26(1986)513-524.

DOI: 10.1007/bf02880911

Google Scholar

[32] H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys, Acta Materialia 54(2006)2419-2429.

DOI: 10.1016/j.actamat.2006.01.019

Google Scholar

[33] G. Lütjering, J.C. Williams, Titanium. Heidelberg: Springer-Verlag, (2007).

Google Scholar

[34] Y.B. Wang, Y.F. Zheng, The microstructure and shape memory effect of Ti-16 at. %Nb alloy, Materials Letters. 62(2008)269-272.

DOI: 10.1016/j.matlet.2007.05.038

Google Scholar

[35] H.W. Jeong, Y.S. Yoo, Y.T. Lee, J.K. Park, Elastic softening behavior of Ti–Nb single crystal near martensitic transformation temperature, Journal of Applied Physics 108(2010)063515.

DOI: 10.1063/1.3486212

Google Scholar

[36] C.N. Reid, J.L. Routbort, R.A. Maynard, Elastic constants of Ti-40 at. % Nb at 298 K, Journal of Applied Physics. 44(1973)1398-1399.

DOI: 10.1063/1.1662365

Google Scholar

[37] Q.M. Hu, R. Yang, J.M. Lu, L. Wang, B . Johansson, L . Vitos, Effect of Zr on the properties of (TiZr)Ni alloys from first-principles calculations, Physical Review B. 76(2007)224201.

DOI: 10.1103/physrevb.76.224201

Google Scholar

[38] H. Matsumoto, S. Watanabe, S. Hanada. Beta TiNbSn Alloys with Low Young's Modulus and High Strength, Materials Transactions. 46(2005)1070-1078.

DOI: 10.2320/matertrans.46.1070

Google Scholar

[39] S.F. Pugh, XCII, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philosophical Magazine Series 7, 45, 823. (1954).

DOI: 10.1080/14786440808520496

Google Scholar