[1]
M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering: A. 243(1998)231-236.
DOI: 10.1016/s0921-5093(97)00806-x
Google Scholar
[2]
K. Wang, The use of titanium for medical applications in the USA, Materials Science and Engineering: A. 213(1996)134-137.
Google Scholar
[3]
H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications, Materials Science and Engineering: C. 26(2006)1269-1277.
DOI: 10.1016/j.msec.2005.08.032
Google Scholar
[4]
M. Long, H.J. Rack, Titanium alloys in total joint replacement-a materials science perspective, Biomaterials. 19(1998)1621-1639.
DOI: 10.1016/s0142-9612(97)00146-4
Google Scholar
[5]
M. Niinomi, Recent metallic materials for biomedical applications, Metallurgical and Materials Transactions A. 33(2002)477-486.
DOI: 10.1007/s11661-002-0109-2
Google Scholar
[6]
Y.L. Hao, S.J. Li, B.B. Sun, M.L. Sui, R. Yang, Ductile Titanium Alloy with Low Poisson's Ratio, Physical Review Letters. 98(2007)216405.
DOI: 10.1103/physrevlett.98.216405
Google Scholar
[7]
L.M. Elias, S.G. Schneider, S. Schneider, H.M. Silva, E. Malvisi, Microstructural and mechanical characterization of biomedical Ti-Nb-Zr(-Ta) alloys, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing . 432(2006).
DOI: 10.1016/j.msea.2006.06.013
Google Scholar
[8]
Y. Al-Zain, H.Y. Kim, H. Hosoda, T.H. Nam, S. Miyazaki, Shape memory properties of Ti-Nb-Mo biomedical alloys, Acta Materialia 58(2010)4212-4223.
DOI: 10.1016/j.actamat.2010.04.013
Google Scholar
[9]
Y.J. Bai, Y.B. Wang, Y. Cheng, F. Deng, Y.F. Zheng, S.C. Wei, Comparative study on the corrosion behavior of Ti-Nb and TMA alloys for dental application in various artificial solutions, Materials Science & Engineering C-Materials for Biological Applications . 31(2011).
DOI: 10.1016/j.msec.2010.12.010
Google Scholar
[10]
Y.F. Zheng, B.L. Wang, J.G. Wang, C. Li, L.C. Zhao, Corrosion behaviour of Ti-Nb-Sn shape memory alloys in different simulated body solutions, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 438(2006).
DOI: 10.1016/j.msea.2006.01.131
Google Scholar
[11]
K. Miura, N. Yamada, S. Hanada, T.K. Jung, E. Itoi, The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young's modulus, Acta Biomaterialia. 7(2011)2320-2326.
DOI: 10.1016/j.actbio.2011.02.008
Google Scholar
[12]
B.L. Wang, L. Li, Y.F. Zheng, In vitro cytotoxicity and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys, Biomedical Materials. 5(2010)044102.
DOI: 10.1088/1748-6041/5/4/044102
Google Scholar
[13]
H.Y. Kim, H. Satoru, J.I. Kim, H. Hosoda, S. Miyazaki, Mechanical properties and shape memory behavior of ti-nb alloys, Materials Transactions. 45(2004)2443-2448.
DOI: 10.2320/matertrans.45.2443
Google Scholar
[14]
S.A. Souza, R.B. Manicardi, P.L. Ferrandini, C.R.M. Afonso, A.J. Ramirez, R. Caram, Effect of the addition of Ta on microstructure and properties of Ti–Nb alloys, Journal of Alloys and Compounds. 504(2010)330-340.
DOI: 10.1016/j.jallcom.2010.05.134
Google Scholar
[15]
P.J.S. Buenconsejo, H.Y. Kim, H. Hosoda, S. Miyazaki, Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy, Acta Materialia. 57(2009)1068-1077.
DOI: 10.1016/j.actamat.2008.10.041
Google Scholar
[16]
P.J.S. Buenconsejo, H.Y. Kim, S. Miyazaki, Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys, Acta Materialia. 57(2009)2509-2515.
DOI: 10.1016/j.actamat.2009.02.007
Google Scholar
[17]
D. Raabe, B. Sander, M. Friák, D. Ma, J. Neugebauer, Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: Theory and experiments, Acta Materialia. 55(2007)4475-4487.
DOI: 10.1016/j.actamat.2007.04.024
Google Scholar
[18]
H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, T. Saito. First-principles calculations for development of low elastic modulus Ti alloys, Physical Review B. 70(2004)174113.
DOI: 10.1103/physrevb.70.174113
Google Scholar
[19]
Y. Qiang, S. Jian, X. Hui, G. Wen-yuan, Influence of Nb and Mo contents on phase stability and elastic property of β-type Ti-X alloys, Transactions of Nonferrous Metals Society of China. 17(2007)1417-1421.
DOI: 10.1016/s1003-6326(07)60287-8
Google Scholar
[20]
L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications. London: Springer-Verlag, (2007).
Google Scholar
[21]
L. Vitos, I.A. Abrikosov, B. Johansson, Anisotropic Lattice Distortions in Random Alloys from First-Principles Theory, Physical Review Letters . 87(2001)156401.
DOI: 10.1103/physrevlett.87.156401
Google Scholar
[22]
O.K. Andersen, O. Jepsen, G. Krier. Exact Muffin-Tin Orbital Theory. In: V. Kumar, O.K. Andersen, A. Mookerjee, editors. Lectures on Methods of Electronic Structure Calculations. Singapore: World Scientific Publishing Co., 1994. p.63.
DOI: 10.1142/9789814503778_0003
Google Scholar
[23]
L. Vitos, Total-energy method based on the exact muffin-tin orbitals theory, Physical Review B. 64(2001)014107.
DOI: 10.1103/physrevb.64.014107
Google Scholar
[24]
G. Grimvall, Thermophysical Properties of Materials, Amsterdam: North-Holland, (1999).
Google Scholar
[25]
P. Söderlind, L. Nordström, Y. Lou, B. Johansson. Relativistic effects on the thermal expansion of the actinide elements, Physical Review B. 42(1990)4544-4552.
DOI: 10.1103/physrevb.42.4544
Google Scholar
[26]
J. Friedel, Stability of the body centred cubic phase in metals at high temperatures, Journal de Physique Lettres. 35(1974)L59-L63.
DOI: 10.1051/jphyslet:0197400350405900
Google Scholar
[27]
C. Kittel, Introduction to Solid State Physics. New York: John-Wiley & Sons, Inc., 1996. p.23.
Google Scholar
[28]
D.I. Bolef, Elastic Constants of Single Crystals of the bcc Transition Elements V, Nb, and Ta, Journal of Applied Physics. 32(1961)100-105.
DOI: 10.1063/1.1735933
Google Scholar
[29]
S. Allard, editor Metals, Thermal and Mechanical Data. New York: Pergamon Press, (1969).
Google Scholar
[30]
A.V. Dobromyslov, V.A. Elkin, Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4–6 periods, Scripta Materialia 44(2001)905-910.
DOI: 10.1016/s1359-6462(00)00694-1
Google Scholar
[31]
Y. Hariharan, M.P. Janawadkar, T.S. Radhakrishnan, A.L.E. Terrance, G.A. Dixit, V.S. Raghunathan, Structure property correlations in superconducting Ti-Nb alloys, Pramana 26(1986)513-524.
DOI: 10.1007/bf02880911
Google Scholar
[32]
H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys, Acta Materialia 54(2006)2419-2429.
DOI: 10.1016/j.actamat.2006.01.019
Google Scholar
[33]
G. Lütjering, J.C. Williams, Titanium. Heidelberg: Springer-Verlag, (2007).
Google Scholar
[34]
Y.B. Wang, Y.F. Zheng, The microstructure and shape memory effect of Ti-16 at. %Nb alloy, Materials Letters. 62(2008)269-272.
DOI: 10.1016/j.matlet.2007.05.038
Google Scholar
[35]
H.W. Jeong, Y.S. Yoo, Y.T. Lee, J.K. Park, Elastic softening behavior of Ti–Nb single crystal near martensitic transformation temperature, Journal of Applied Physics 108(2010)063515.
DOI: 10.1063/1.3486212
Google Scholar
[36]
C.N. Reid, J.L. Routbort, R.A. Maynard, Elastic constants of Ti-40 at. % Nb at 298 K, Journal of Applied Physics. 44(1973)1398-1399.
DOI: 10.1063/1.1662365
Google Scholar
[37]
Q.M. Hu, R. Yang, J.M. Lu, L. Wang, B . Johansson, L . Vitos, Effect of Zr on the properties of (TiZr)Ni alloys from first-principles calculations, Physical Review B. 76(2007)224201.
DOI: 10.1103/physrevb.76.224201
Google Scholar
[38]
H. Matsumoto, S. Watanabe, S. Hanada. Beta TiNbSn Alloys with Low Young's Modulus and High Strength, Materials Transactions. 46(2005)1070-1078.
DOI: 10.2320/matertrans.46.1070
Google Scholar
[39]
S.F. Pugh, XCII, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philosophical Magazine Series 7, 45, 823. (1954).
DOI: 10.1080/14786440808520496
Google Scholar