Designing Multi-Component β-Ti Alloys with Low Young's Modulus

Article Preview

Abstract:

[(Mo,Sn)(Ti,Zr)14]Nb1 serial alloy compositions were designed using a cluster-plus-glue-atom model to receive BCC β-Ti alloys with low Youngs modulus (E) in Ti-based multi-component systems, where the square brackets enclose the coordination polyhedron cluster CN14 of the BCC structure and Nb is the glue atom. These serial alloys were prepared into rods with a diameter of 6 mm by copper-mould suction casting method. XRD and tensile test results indicated that all these alloy series possessed a monolithic BCC structure except [SnTi14]Nb1 and [(Mo0.5Sn0.5)Ti14]Nb1 due to Sn deteriorating BCC structural stability. A combination of Mo0.5Sn0.5 at the cluster center, as well as low-E Nb and Zr in the glue and cluster shell respectively, can reach simultaneously low E and high BCC stability, incarnated in the [(Mo0.5Sn0.5)(Ti13Zr)]Nb1 alloy which has the lowest E of 48 GPa in the suction-cast state.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 747-748)

Pages:

885-889

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Long and H.J. Rack, Titanium alloys in total joint replacement-a materials science perspective, Biomaterials. 19 (1998) 1621-1639.

DOI: 10.1016/s0142-9612(97)00146-4

Google Scholar

[2] M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Mater. Sci. 54 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[3] T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara and T. Sakuma, Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism, Science. 300 (2003).

DOI: 10.1126/science.1081957

Google Scholar

[4] K. Wang, The use of titanium for medical applications in the USA, Mater. Sci. & Eng. A. 213 (1996) 134-137.

Google Scholar

[5] L.J. Xu and Y.Y. Chen, The microstructure and properties of Ti-Mo-Nb alloys for biomedical application, J. Alloys & Comp. 453 (2008) 320-324.

DOI: 10.1016/j.jallcom.2006.11.144

Google Scholar

[6] M. Niinomi, Mechanical properties of biomedical titanium alloys, Mater. Sci. & Eng. A. 243 (1998) 231-236.

Google Scholar

[7] D.Q. Martins , W.R. Osório, M.E.P. Souza, R. Caram and A. Garcia, Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications, Electrochimica Acta. 53 (2008) 2809-2817.

DOI: 10.1016/j.electacta.2007.10.060

Google Scholar

[8] T. Kasuga, M. Nogami, M. Niinomi, and T. Hattori, Bioactive calcium phosphate invert glass-ceramic coating on beta-type Ti-29Nb-13Ta-4. 6Zr alloy, Biomaterials 24 (2003) 2673-2683.

DOI: 10.1016/s0142-9612(02)00316-2

Google Scholar

[9] Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, Q.M. Hu and R. Yang, Super-elastic titanium alloy with unstable plastic deformation, Appl. Phys. Lett. 87 (2005) 091906.

DOI: 10.1063/1.2037192

Google Scholar

[10] P.J. Bania, Beta Titanium Alloys in the 1990's, TMS, Warrendale, (1993).

Google Scholar

[11] M. Abdel-Hady, K. Hinoshita and M. Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scripta Mater. 55 (2006) 477-480.

DOI: 10.1016/j.scriptamat.2006.04.022

Google Scholar

[12] E.W. Collings, Physical Metallurgy of Titanium Alloys, ASM, Metals Park OH, (1984).

Google Scholar

[13] C. Dong, Q. Wang, J.B. Qiang, Y.M. Wang, N. Jiang, G. Han, Y. H Li, J. Wu, and J.H. Xia, From clusters to phase diagrams: composition tules of quasicrystals and bulk metallic glasses, J. Phys. D. Appl. Phys. 40 (2007) 273-291.

DOI: 10.1088/0022-3727/40/15/r01

Google Scholar

[14] J. Zhang, Q. Wang, Y. M. Wang, C.Y. Li, L.S. Wen and C. Dong, Revelation of solid solubility limit Fe/Ni = 1/12 in corrosion-resistant Cu-Ni alloys and relevant cluster model, J Mater. Res. 25 (2010) 328-336.

DOI: 10.1557/jmr.2010.0041

Google Scholar

[15] J.H. Xia, J.B. Qiang, Y.M. Wang, Q. Wang, C. Dong, Design of Cu8Zr5-based bulk metallic glasses, Appl. Phys. Lett. 88 (2006) 101907.

DOI: 10.1063/1.2183367

Google Scholar

[16] J. Singh, P. Singh, S.K. Pattan and S. Prakash, Strain field due to substitutional transition-metal impurities in bcc metals: Application to dilute vanadium alloys, Phys. Rev. B. 49 (1994) 932-943.

DOI: 10.1103/physrevb.49.932

Google Scholar

[17] C.P. Hao, Q. Wang, R.T. Ma, Y.M. Wang, J.B. Qiang, C. Dong: Cluster-plus-glue-atom model in bcc solid solution alloys Acta Phys. Sin. 60 (2011) 116101.

DOI: 10.7498/aps.60.116101

Google Scholar

[18] A. Takeuchi and A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloy, Mater. Trans. JIM 41 (2000) 1372-1378.

DOI: 10.2320/matertrans1989.41.1372

Google Scholar

[19] Y.B. Zhou, Titanium Alloy Casting, Aviation Industry Press, Beijing, (2000).

Google Scholar