Microstructure Evolution in Undercooled Ni-Si Melt

Article Preview

Abstract:

Upon non-equilibrium solidification, the intrinsic parameters, such as moving velocity, temperature, solute partition coefficient, and liquid and solid concentrations at the interface, deviate from their equilibrium characteristics, and the morphology of the as-solidified structure and the grain size are influenced by the non-equilibrium liqulid/solid transformation, which further influences the subquent solidstate transformation. Adopting molten glass purification technology combined with cycle superheating method, the microstructure evolution of Ni-11at.%Si alloy in different undercooling was investigated. It was found that, with the increase of the initial undercooling, grain refinement occurred in microstructures of undercooled Ni-11at.%Si alloy. Meanwhile, the NL model was used to discuss the two different dendrite morphologies. According to Karmas model for dendrite fragmentation, the grain refinement of undercooled Ni-11at.%Si alloy was in good agreement with the experimental data, and the grain size was reduced with the increasing ΔT. The energy-dispersive spectroscopy (EDS) measurement was applied to analyze the solid solubility of Si atom in α-Ni matrix. It was found that the solid solubility of Si atom in α-Ni matrix increased with undercooling. At the undercooling of T>220K , a complete solute trapping occurred.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-355

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.J. Boettinger, S.R. Coriell, R.F. Sekerka, Mechanisms of microsegregation-free solidification, Mate. Sci. Eng. A 65 (1984) 27-36.

DOI: 10.1016/0025-5416(84)90196-4

Google Scholar

[2] Q.C. Li, C.S. Cui, D.M. Xu, Progress of non-equilibrium solidification theory, J. Mater. Sci. Technol. 14 (1998) 49-505.

Google Scholar

[3] R. Busch, F. Gartner, C. Borchers, Microstructure development during rapid solidifcation of highly supersaturated Cu-Co alloys, Acta Metall. Mater. 43 (1995) 3467-3475.

DOI: 10.1016/0956-7151(95)00038-w

Google Scholar

[4] D. Herlach. D. Holland-Moritz, P. Galenko, Metastable solids from undercooled melts, Pergamon Materials Series, Oxford, (2006).

DOI: 10.1016/s1470-1804(07)80023-x

Google Scholar

[5] D.M. Herlach, Nonequilibrium solidification of undercooled metallic melts, Mater. Sci. Eng. R 12 (1994) 177-272.

Google Scholar

[6] W.J. Boettinger, S.R. Coriell, R. Trivedi, In: R. Mehrabian, P.A. Parrish Eds., Rapid solidification processing: principles and technologies IV, Baton Rouge, LA: Claitor's Pulishing Division, 1988, 13-18.

Google Scholar

[7] H.F. Wang, F. Liu, Z. Chen, Analysis of non-equilibrium dendrite growth in a bulk undercooled alloy melt: model and application, Acta Mater. 55 (2007) 497-506.

DOI: 10.1016/j.actamat.2006.08.042

Google Scholar

[8] J.W. Christian, The theory of transformation in metals and alloys, Pergamon Press, Oxford, 2002, 422- 479.

Google Scholar

[9] F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer, Analysis of solid state phase transformation kinetics: models and recipes, Int. Mater. Rev. 52 (2007) 193-212.

DOI: 10.1179/174328007x160308

Google Scholar

[10] F. Liu, F. Sommer, E.J. Mittemeijer, Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data, Acta Mater. 52 (2004) 3207-3216.

DOI: 10.1016/j.actamat.2004.03.020

Google Scholar

[11] K. Fan, F. Liu, X.N. Liu, Y.X. Zhang, G.C. Yang, Y.H. Zhou, Modeling of isothermal solid-state precipitation using an analytical treatment of soft impingement, Acta Mater. 56 (2008) 4309-4318.

DOI: 10.1016/j.actamat.2008.04.053

Google Scholar

[12] K. Fan, F. Liu, S.J. Song, G.C. Yang, Y.H. Zhou. Deduction of activation energy for diffusion by analyzing soft impingement in isothermal solid-state precipitation, J. Alloy Compds. 491 (2010) L11-L14.

DOI: 10.1016/j.jallcom.2009.10.181

Google Scholar

[13] K. Fan, F. Liu, Y.Z. Ma, G.C. Yang, Y.H. Zhou, Modeling of σ-phase precipitation in a 2205 duplex stainless steel using an analytical soft impingement treatment, Mater. Sci. Eng. A 527 (2010) 4550-4553.

DOI: 10.1016/j.msea.2010.04.074

Google Scholar

[14] K. Fan, F. Liu, W. Yang, G.C. Yang, Y.H. Zhou, Analysis soft impingement in non-isothermal precipitation, J. Mater. Res. 24 (2009) 3664-3673.

DOI: 10.1557/jmr.2009.0434

Google Scholar

[15] K. Fan, F. Liu, K. Zhang, G.C. Yang, Y.H. Zhou, Deduction of activation energy for diffusion by analyzing soft impingement in non-isothermal solid-state precipitation. J. Cryst. Growth 311(2009) 4660-4664.

DOI: 10.1016/j.jcrysgro.2009.09.003

Google Scholar

[16] F.S. Ham, Theory of diffusion-limited precipitation, J. Phys. Chem. Solids. 6 (1958) 335-351.

Google Scholar

[17] C. Shen, J.P. Simmons, K. Wu, Development of computational tools for microstructural engineering of Ni-based superalloys by means of the phase field method., Materials design approaches and experiences, USA, 2001, The minerals, metals & materials society, (2001).

Google Scholar

[18] Y.J. Lan, D.Z. Li, Y.Y. Li, Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method, Acta mater. 52 (2004) 1721-1729.

DOI: 10.1016/j.actamat.2003.12.045

Google Scholar

[19] C.W. Zheng, N.M. Xiao, L.H. Hao, D.Z. Li, Y.Y. Li, Numerical simulation of dynamic strain-induced austenite–ferrite transformation in a low carbon steel, Acta Mater. 57 (2009): 2956-2968.

DOI: 10.1016/j.actamat.2009.03.005

Google Scholar

[20] Y.H. Wen, J.P. Simmons, C. Shen, C. Woodward, Y. Wang, Phase-field modeling of bimodal particle size distributions during continuous cooling, Acta Mater. 51 (2003) 1123-1132.

DOI: 10.1016/s1359-6454(02)00516-5

Google Scholar

[21] H. Sieurin, R. Sandström, Sigma phase precipitation in duplex stainless steel 2205, Mater. Sci. Eng. A 444 (2007) 271-276.

DOI: 10.1016/j.msea.2006.08.107

Google Scholar

[22] K. Fan, F. Liu, B.Q. Fu, Precipitation in as-solidified undercooled Ni-Si alloy, submitted to Materials Science Forum (2012).

Google Scholar

[23] M.J. Aziz, Model for solute redistribution during rapid solidification. J. Appl. Phys. 53 (1982) 1158-1168.

DOI: 10.1063/1.329867

Google Scholar

[24] A. Karma, Model of grain refinement in solidification of undercooled melts, J. Non-equilibrium Proc. 11 (1998) 201-209.

Google Scholar

[25] M. Schwarz, A. Karma, K. Eckler, D.M. Herlach, Physical mechanism of grain refinement in undercooled melt, Phys. Rev. Lett. 73 (1994) 1380-1383.

DOI: 10.1103/physrevlett.73.1380

Google Scholar