[1]
W.J. Boettinger, S.R. Coriell, R.F. Sekerka, Mechanisms of microsegregation-free solidification, Mate. Sci. Eng. A 65 (1984) 27-36.
DOI: 10.1016/0025-5416(84)90196-4
Google Scholar
[2]
Q.C. Li, C.S. Cui, D.M. Xu, Progress of non-equilibrium solidification theory, J. Mater. Sci. Technol. 14 (1998) 49-505.
Google Scholar
[3]
R. Busch, F. Gartner, C. Borchers, Microstructure development during rapid solidifcation of highly supersaturated Cu-Co alloys, Acta Metall. Mater. 43 (1995) 3467-3475.
DOI: 10.1016/0956-7151(95)00038-w
Google Scholar
[4]
D. Herlach. D. Holland-Moritz, P. Galenko, Metastable solids from undercooled melts, Pergamon Materials Series, Oxford, (2006).
DOI: 10.1016/s1470-1804(07)80023-x
Google Scholar
[5]
D.M. Herlach, Nonequilibrium solidification of undercooled metallic melts, Mater. Sci. Eng. R 12 (1994) 177-272.
Google Scholar
[6]
W.J. Boettinger, S.R. Coriell, R. Trivedi, In: R. Mehrabian, P.A. Parrish Eds., Rapid solidification processing: principles and technologies IV, Baton Rouge, LA: Claitor's Pulishing Division, 1988, 13-18.
Google Scholar
[7]
H.F. Wang, F. Liu, Z. Chen, Analysis of non-equilibrium dendrite growth in a bulk undercooled alloy melt: model and application, Acta Mater. 55 (2007) 497-506.
DOI: 10.1016/j.actamat.2006.08.042
Google Scholar
[8]
J.W. Christian, The theory of transformation in metals and alloys, Pergamon Press, Oxford, 2002, 422- 479.
Google Scholar
[9]
F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer, Analysis of solid state phase transformation kinetics: models and recipes, Int. Mater. Rev. 52 (2007) 193-212.
DOI: 10.1179/174328007x160308
Google Scholar
[10]
F. Liu, F. Sommer, E.J. Mittemeijer, Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data, Acta Mater. 52 (2004) 3207-3216.
DOI: 10.1016/j.actamat.2004.03.020
Google Scholar
[11]
K. Fan, F. Liu, X.N. Liu, Y.X. Zhang, G.C. Yang, Y.H. Zhou, Modeling of isothermal solid-state precipitation using an analytical treatment of soft impingement, Acta Mater. 56 (2008) 4309-4318.
DOI: 10.1016/j.actamat.2008.04.053
Google Scholar
[12]
K. Fan, F. Liu, S.J. Song, G.C. Yang, Y.H. Zhou. Deduction of activation energy for diffusion by analyzing soft impingement in isothermal solid-state precipitation, J. Alloy Compds. 491 (2010) L11-L14.
DOI: 10.1016/j.jallcom.2009.10.181
Google Scholar
[13]
K. Fan, F. Liu, Y.Z. Ma, G.C. Yang, Y.H. Zhou, Modeling of σ-phase precipitation in a 2205 duplex stainless steel using an analytical soft impingement treatment, Mater. Sci. Eng. A 527 (2010) 4550-4553.
DOI: 10.1016/j.msea.2010.04.074
Google Scholar
[14]
K. Fan, F. Liu, W. Yang, G.C. Yang, Y.H. Zhou, Analysis soft impingement in non-isothermal precipitation, J. Mater. Res. 24 (2009) 3664-3673.
DOI: 10.1557/jmr.2009.0434
Google Scholar
[15]
K. Fan, F. Liu, K. Zhang, G.C. Yang, Y.H. Zhou, Deduction of activation energy for diffusion by analyzing soft impingement in non-isothermal solid-state precipitation. J. Cryst. Growth 311(2009) 4660-4664.
DOI: 10.1016/j.jcrysgro.2009.09.003
Google Scholar
[16]
F.S. Ham, Theory of diffusion-limited precipitation, J. Phys. Chem. Solids. 6 (1958) 335-351.
Google Scholar
[17]
C. Shen, J.P. Simmons, K. Wu, Development of computational tools for microstructural engineering of Ni-based superalloys by means of the phase field method., Materials design approaches and experiences, USA, 2001, The minerals, metals & materials society, (2001).
Google Scholar
[18]
Y.J. Lan, D.Z. Li, Y.Y. Li, Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method, Acta mater. 52 (2004) 1721-1729.
DOI: 10.1016/j.actamat.2003.12.045
Google Scholar
[19]
C.W. Zheng, N.M. Xiao, L.H. Hao, D.Z. Li, Y.Y. Li, Numerical simulation of dynamic strain-induced austenite–ferrite transformation in a low carbon steel, Acta Mater. 57 (2009): 2956-2968.
DOI: 10.1016/j.actamat.2009.03.005
Google Scholar
[20]
Y.H. Wen, J.P. Simmons, C. Shen, C. Woodward, Y. Wang, Phase-field modeling of bimodal particle size distributions during continuous cooling, Acta Mater. 51 (2003) 1123-1132.
DOI: 10.1016/s1359-6454(02)00516-5
Google Scholar
[21]
H. Sieurin, R. Sandström, Sigma phase precipitation in duplex stainless steel 2205, Mater. Sci. Eng. A 444 (2007) 271-276.
DOI: 10.1016/j.msea.2006.08.107
Google Scholar
[22]
K. Fan, F. Liu, B.Q. Fu, Precipitation in as-solidified undercooled Ni-Si alloy, submitted to Materials Science Forum (2012).
Google Scholar
[23]
M.J. Aziz, Model for solute redistribution during rapid solidification. J. Appl. Phys. 53 (1982) 1158-1168.
DOI: 10.1063/1.329867
Google Scholar
[24]
A. Karma, Model of grain refinement in solidification of undercooled melts, J. Non-equilibrium Proc. 11 (1998) 201-209.
Google Scholar
[25]
M. Schwarz, A. Karma, K. Eckler, D.M. Herlach, Physical mechanism of grain refinement in undercooled melt, Phys. Rev. Lett. 73 (1994) 1380-1383.
DOI: 10.1103/physrevlett.73.1380
Google Scholar