Size Dependent Mechanical Properties of Graphene Nanoribbons: Molecular Dynamics Simulation

Article Preview

Abstract:

Strain engineering is an effective method to tune the band gap and electronic transport properties of graphene nanoribbons (GNRs). However, strain/stress field may promote the system deviating from the equilibrium state, and the mechanical stability will become one of the key issues for reliable services of relevant devices. In this paper, the size-dependent mechanical properties of GNRs under tensile loading were studied by Molecular Dynamics (MD) simulations. The results indicate that the yield stress of both zigzag and armchair GNRs decreases with the ribbon length changing from 240 Å to 30 Å. However, the ductility of armchair GNRs was significantly improved. Radial Distribution Function (RDF) was employed to analyze the evolution of atomic configurations. It showed that lattice shearing is the main mechanism for the ductility of armchair GNRs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

456-460

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Information on http: /www. itrs. net/Links/2008ITRS/Home2008. htm.

Google Scholar

[2] M. J. Kumar, A. A. Orouji, Two-dimensional analytical threshold voltage model of nanoscale fully depleted SOI MOSFET with electrically induced S/D extensions, IEEE Trans. Electr. Dev. 52 (2005) 1568-1575.

DOI: 10.1109/ted.2005.850624

Google Scholar

[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666.

DOI: 10.1126/science.1102896

Google Scholar

[4] W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its Applications: A review, Crit. Rev. Solid State Mater. Sci. 35 (2010) 52-71.

DOI: 10.1080/10408430903505036

Google Scholar

[5] Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene, Science 327 (2010) 662.

DOI: 10.1126/science.1184289

Google Scholar

[6] G. Cocco, E. Cadelano, L. Colombo, Gap opening in graphene by shear strain, Phys. Rev. B 81 (2010) 241412.

DOI: 10.1103/physrevb.81.241412

Google Scholar

[7] X. G. Liang, Y. S. Jung, S. W. Wu, A. Ismach, D. L. Olynick, S. Cabrini, J. Bokor, Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography, Nano Lett. 10 (2010) 2454-2460.

DOI: 10.1021/nl100750v

Google Scholar

[8] Y. W. Son, M. L. Cohen, S. G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97 (2006) 216803.

DOI: 10.1103/physrevlett.98.089901

Google Scholar

[9] C. Lee, X. D. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[10] E. Cadelano, L. P. Palla, S. Giordano, L. Colombo, Nonlinear elasticity of monolayer graphene, Phys. Rev. Lett. 102 (2009) 235502.

DOI: 10.1103/physrevlett.102.235502

Google Scholar

[11] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Com. Phys. 117 (1995) 1.

Google Scholar

[12] S. J. Stuart, A. B. Tutein, J. A. Harrison, Effects of monolayer disorder on the friction of anchored alkane chains, J. Chem. Phys. 112 (2000) 6472-6486.

Google Scholar

[13] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter. 14 (2002) 783-802.

DOI: 10.1088/0953-8984/14/4/312

Google Scholar

[14] Q. X. Pei, Y. W. Zhang, V. B. Shenoy, A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene, Carbon 48 (2010) 898-904.

DOI: 10.1016/j.carbon.2009.11.014

Google Scholar

[15] O. A. Shenderova, D. W. Brenner, Atomistic modeling of the fracture of polycrystalline diamond, Phys. Rev. B 61 (2000) 3877-3888.

DOI: 10.1103/physrevb.61.3877

Google Scholar

[16] H. Zhao, K. Min, N. R. Aluru, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension, Nano Lett. 9 (2009) 3012-3015.

DOI: 10.1021/nl901448z

Google Scholar

[17] G. Cocco, E. Cadelano, L. Colombo, Gap opening in graphene by shear strain, Phys. Rev. B 81 (2010) 241412.

DOI: 10.1103/physrevb.81.241412

Google Scholar

[18] J. Zhou, R. Huang, Internal lattice relaxation of single-layer graphene under in-plane deformation, J. Mech. Phys. Solids 56 (2008) 1609-1623.

DOI: 10.1016/j.jmps.2007.07.013

Google Scholar

[19] F. Ma, Y. J. Sun, D. Y. Ma, K. W. Xu, P. K. Chu, Reversible phase transformation in graphene nano-ribbons: Lattice shearing based mechanism, Acta Mater. 59 (2011) 6783-6789.

DOI: 10.1016/j.actamat.2011.07.036

Google Scholar