First-Principles Study on the Thermodynamic Properties of Nb, Cr2Nb and Nb5Si3 Alloys

Article Preview

Abstract:

Nb-Si-Cr alloys have shown great potential as the aviation materials because of their good mechanical properties and high temperature oxidation resistance. The thermodynamic properties of Nb, Cr2Nb, α-Nb5Si3, β-Nb5Si3, as the main constituent phases of Nb-Si-Cr alloys, were calculated by first-principles methods combined with quasi-harmonic Debye model. The calculated results are in agreement with available experimental data. Compared the thermo-dynamic properties of different phases, it is found that the thermal expansions of these phases are similar and have the same trend with change of temperature. Thermal expansion coefficient of these phases are dependent with increases with temperature and decreases with pressure, respectively, while the bulk moduli decreases with increasing temperature. At last, the micro stress created by the differences in coefficients of thermal expansion between Nb and Cr2Nb upon cooling was evaluated. The result showed that the stress is too small to cause cracking at the interface between Nb and Cr2Nb.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

466-472

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, Advanced intermetallic alloys beyond gamma titanium aluminides, Mater. Sci. Eng., A. 239-240 (1997) 1-13.

DOI: 10.1016/s0921-5093(97)00555-8

Google Scholar

[2] M.G. Mendiratta, J.J. Lewandowski, D.M. Dimiduk, Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys, Metall. Mater. Trans. A. 22 (1991) 1573-1583.

DOI: 10.1007/bf02667370

Google Scholar

[3] L.N. Jia, X.P. Guo, Effects of Alloying Elements and Heat Treatments on the Microstructure and Mechanical Properties of Refractory Metal Silicide-Based Alloys, RARE METAL MAT ENG. 36 (2007) 1304-1308.

Google Scholar

[4] S.K. Varma, C. Parga, K. Amato, J. Hernandez, Microstructures and high temperature oxidation resistance of alloys from Nb–Cr–Si system, J. Mater. Sci. 45 (2010) 3931-3937.

DOI: 10.1007/s10853-010-4458-8

Google Scholar

[5] J.K. Zhai, Metal High-temperature Corrosion, Beihang University Press, Beijing, 1994, p.4.

Google Scholar

[6] G. Shao, Thermodynamic modelling of the Cr–Nb–Si system, Intermetallics. 13 (2005) 69-78.

DOI: 10.1016/j.intermet.2004.06.003

Google Scholar

[7] R. Tewari, H. Song, A. Chatterjee, V.K. Vasudevan, Microstructural characterization of multicomponent Nb-Ti-Si-Cr-Al-X alloys, Metall. Mater. Trans. A. 37 (2006) 2669-2682.

DOI: 10.1007/bf02586101

Google Scholar

[8] J. Geng, P. Tsakiropoulos, G.S. Shao, Oxidation of Nb–Si–Cr–Al in situ composites with Mo, Ti and Hf additions, Mater. Sci. Eng., A. 441 (2006) 26-38.

DOI: 10.1016/j.msea.2006.08.093

Google Scholar

[9] J.C. Zhao, M.R. Jackson, L.A. Peluso, Evaluation of phase relations in the Nb-Cr-Al system at 1000°C using a diffusion-multiple approach, JPEDAV. 25(2004) 152-159.

DOI: 10.1361/15477030418550

Google Scholar

[10] B.P. Bewlay, Y. Yang, R.L. Casey, M.R. Jackson, Y.A. Chang, Experimental study of the liquid–solid phase equilibria at the metal-rich region of the Nb–Cr–Si system, Intermetallics. 17 (2009) 120-127.

DOI: 10.1016/j.intermet.2008.10.005

Google Scholar

[11] A. Deal, W. Heward, D. Ellis, J. Cournoyer, K. Dovidenko, B.P. Bewlay. Phase Identification in Nb-Cr-Si Alloys, Microsc. Microanal. 13 (2007) 90-91.

DOI: 10.1017/s1431927607079275

Google Scholar

[12] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[13] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[14] D. Vanderbilt, Soft self-consistent pseudo potentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[15] J.P. Perdew, K. Burke, Ernzerhof M. Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[16] M.A. Blanco, E. Francisco, V. Luaña, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158 (2004) 57-72.

DOI: 10.1016/j.comphy.2003.12.001

Google Scholar

[17] E. Francisco, M.A. Blanco, G. Sanjurjo, Atomistic simulation of SrF2 polymorphs, Phys. Rev. B. 63 (2001) 094107.

Google Scholar

[18] E. Francisco, J.M. Recio, M.A. Blanco, A.M. Pendás, Quantum-Mechanical Study of Thermodynamic and Bonding Properties of MgF2, J. Phys. Chem. A. 102 (1998) 1595-1601.

DOI: 10.1021/jp972516j

Google Scholar

[19] R. Liu, J.X. Shang, First-principles study of thermal properties and phase transition between β -Ti3O5and λ-Ti3O5, Modell. Simul. Mater. Sci. Eng. 20 (2012) 035020.

Google Scholar

[20] R. Liu, J.X. Shang, Firdt Principle Stuy on C, N Doped Ti3O5, Journal of Synthetic Crystals. 41 (2012) 376-380.

Google Scholar

[21] K.D. Maglić, N.L. Perović, G.S. Vuković, L.P. Zeković, Specific heat and electrical resistivity of niobium measured by subsecond calorimetric technique, Int. J. Thermophys. 15 (1994) 963-972.

DOI: 10.1007/bf01447106

Google Scholar

[22] A. Kellou, T. Grosdidier, C. Coddet, H. Aourag, Theoretical study of structural, electronic, and thermal properties of Cr2(Zr, Nb) Laves alloys, Acta Mater. 53 (2005) 1459-1466.

DOI: 10.1016/j.actamat.2004.11.039

Google Scholar

[23] Y. Chen, T. Hammerschmidt, D.G. Pettifor, J.X. Shang, Y. Zhang, Influence of vibrational entropy on structural stability of Nb–Si and Mo–Si systems at elevated temperatures, Acta Mater. 57 (2009) 2657-2664.

DOI: 10.1016/j.actamat.2009.02.014

Google Scholar

[24] S. Hong, C.L. Fu, Theoretical study on cracking behavior in two-phase alloys Cr–Cr2X (X=Hf, Nb, Ta, Zr), Intermetallics. 9 (2001) 799-805.

DOI: 10.1016/s0966-9795(01)00069-3

Google Scholar

[25] Y. Chen, J.X. Shang, Y. Zhang, Effects of alloying element Ti on α-Nb5Si3 and Nb3Al from first principles, J. Phys.: Condens. Matter. 19(2007) 016215.

DOI: 10.1088/0953-8984/19/1/016215

Google Scholar

[26] Fran Cverna, ASM Ready Reference: Thermal Properties of Metals, ASM International, Ohio, 2002, pp.9-10.

Google Scholar

[27] F.Z. Lian, Materials Physical Properties, Northeast University Press, Shenyang, 2005, p.175.

Google Scholar

[28] L.C. Xing. Tantalum and Niobium metallurgy, Metallurgical Industry Press, Beijing, 1982, p.1.

Google Scholar

[29] L.T. Zhang, J.S. Wu, Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3, Scripta Mater. 38 (1998) 307-313.

DOI: 10.1016/s1359-6462(97)00496-x

Google Scholar

[30] S. Hong, C.L. Fu, Phase stability and elastic moduli of Cr2Nb by first-principles calculations, Intermetallics. 7 (1999) 5-9.

DOI: 10.1016/s0966-9795(98)00005-3

Google Scholar

[31] S. Lee, P.K. Liaw, C.T. Liu, Y.T. Chou, Cracking in Cr–Cr2Nb eutectic alloys due to thermal stresses, Mater. Sci. Eng., A. 268 (1999) 184-192.

DOI: 10.1016/s0921-5093(99)00068-4

Google Scholar